Maximum distance in single-isocenter technique of stereotactic radiosurgery with rotational error using margin-based analysis.
PTV margin
Rotational error
Setup error
Single-isocenter technique
VMAT
Volumetric modulated arc therapy
Journal
Radiological physics and technology
ISSN: 1865-0341
Titre abrégé: Radiol Phys Technol
Pays: Japan
ID NLM: 101467995
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
05
08
2020
accepted:
07
12
2020
revised:
02
12
2020
pubmed:
5
1
2021
medline:
11
9
2021
entrez:
4
1
2021
Statut:
ppublish
Résumé
Through geometrical simulation, we evaluated the effect of rotational error in patient setup on geometrical coverage and calculated the maximum distance between the isocenter and target, where the clinical PTV margin secures geometrical coverage with a single-isocenter technique. We used simulated spherical GTVs with diameters of 1.0 (GTV 1), 1.5 (GTV 2), 2.0 (GTV 3), and 3.0 cm (GTV 4). The location of the target center was set such that the distance between the target and isocenter ranged from 0 to 15 cm. We created geometrical coverage vectors so that each target was entirely covered by 100% of the prescribed dose. The vectors of the target positions were simultaneously rotated within a range of 0°-2.0° around the x-, y-, and z-axes. For each rotational error, the reduction in geometrical coverage of the targets was calculated and compared with that obtained for a rotational error of 0°. The tolerance value of the geometrical coverage reduction was defined as 5% of the GTV. The maximum distance that satisfied the 5% tolerance value for different values of rotational error at a clinical PTV margin of 0.1 cm was calculated. When the rotational errors were 0.5° for a 0.1 cm PTV margin, the maximum distances were as follows: GTV 1: 7.6 cm; GTV 2: 10.9 cm; GTV 3: 14.3 cm; and GTV 4: 21.4 cm. It might be advisable to exclude targets that are > 7.6 cm away from the isocenter with a single-isocenter technique to satisfy the tolerance value for all GTVs.
Identifiants
pubmed: 33393057
doi: 10.1007/s12194-020-00602-2
pii: 10.1007/s12194-020-00602-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
57-63Subventions
Organisme : Japan Society for the Promotion of Science
ID : 19K17227
Références
Thomas EM, Popple RA, Wu X, et al. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. Neurosurgery. 2014;75(4):409–17.
doi: 10.1227/NEU.0000000000000448
Murray LJ, Thompson CM, Lilley J, et al. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy. Phys Med Biol. 2015;60(3):1237–57.
doi: 10.1088/0031-9155/60/3/1237
Ling CC, Zhang P, Archambault Y, et al. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys. 2008;72(2):575–81.
doi: 10.1016/j.ijrobp.2008.05.060
Li Y, Chen L, Zhu J, et al. A quantitative method to the analysis of MLC leaf position and speed based on EPID and EBT3 film for dynamic IMRT treatment with different types of MLC. J Appl Clin Med Phys. 2017;18(4):106–15.
doi: 10.1002/acm2.12102
Sukhikh ES, Sukhikh LG, Taletsky AV, et al. Influence of SBRT fractionation on TCP and NTCP estimations for prostate cancer. Phys Med. 2019;62:41–6.
doi: 10.1016/j.ejmp.2019.04.017
Ballangrud Å, Kuo LC, Happersett L, et al. Institutional experience with SRS VMAT planning for multiple cranial metastases. J Appl Clin Med Phys. 2018;19(2):176–83.
doi: 10.1002/acm2.12284
Ruggieri R, Naccarato S, Mazzola R, et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique. Radiat Oncol. 2018;13(1):38.
doi: 10.1186/s13014-018-0985-2
Huang Y, Chin K, Robbins JR, et al. Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA). Radiother Oncol. 2014;112(1):128–32.
doi: 10.1016/j.radonc.2014.05.009
Nath SK, Lawson JD, Simpson DR, et al. Single-isocenter frameless intensity-modulated stereotactic radiosurgery for simultaneous treatment of multiple brain metastases: clinical experience. Int J Radiat Oncol Biol Phys. 2010;78(1):91–7.
doi: 10.1016/j.ijrobp.2009.07.1726
Mangesius J, Seppi T, Weigel R, et al. Intrafractional 6D head movement increases with time of mask fixation during stereotactic intracranial RT-sessions. Radiat Oncol. 2019;14(1):231.
doi: 10.1186/s13014-019-1425-7
Clark GM, Popple RA, Young PE, et al. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys. 2010;76(1):296–302.
doi: 10.1016/j.ijrobp.2009.05.029
Zhang I, Antone J, Li J, et al. Hippocampal-sparing and target volume coverage in treating 3 to 10 brain metastases: a comparison of Gamma Knife, single-isocenter VMAT, CyberKnife, and TomoTherapy stereotactic radiosurgery. Pract Radiat Oncol. 2017;7(3):183–9.
doi: 10.1016/j.prro.2017.01.012
Ziemer BP, Sanghvi P, Hattangadi-Gluth J, et al. Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases. Med Phys. 2017;44(10):5001–9.
doi: 10.1002/mp.12479
Gevaert T, Steenbeke F, Pellegri L, et al. Evaluation of a dedicated brain metastases treatment planning optimization for radiosurgery: a new treatment paradigm? Radiat Oncol. 2016;11:13.
doi: 10.1186/s13014-016-0593-y
Wu Q, Snyder KC, Liu C, et al. Optimization of treatment geometry to reduce normal brain dose in radiosurgery of multiple brain metastases with single-isocenter volumetric modulated arc therapy. Sci Rep. 2016;6:34511.
doi: 10.1038/srep34511
Yuan Y, Thomas EM, Clark GA, et al. Evaluation of multiple factors affecting normal brain dose in single-isocenter multiple target radiosurgery. J Radiosurg SBRT. 2018;5(2):131–44.
pubmed: 29657894
pmcid: 5893454
Nataf F, Schlienger M, Liu Z, et al. Radiosurgery with or without A 2-mm margin for 93 single brain metastases. Int J Radiat Oncol Biol Phys. 2008;70(3):766–72.
doi: 10.1016/j.ijrobp.2007.11.002
Jhaveri J, Chowdhary M, Zhang X, et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg. 2018;130(3):797–803.
doi: 10.3171/2017.9.JNS171735
Chang J. A statistical model for analyzing the rotational error of single isocenter for multiple targets. Med Phys. 2017;44(6):2115–23.
doi: 10.1002/mp.12262
Roper J, Chanyavanich V, Betzel G, et al. Single-isocenter multiple-target stereotactic radiosurgery: risk of compromised coverage. Int J Radiat Oncol Biol Phys. 2015;93(3):540–6.
doi: 10.1016/j.ijrobp.2015.07.2262
Sagawa T, Ohira S, Ueda Y, et al. Dosimetric effect of rotational setup errors in stereotactic radiosurgery with HyperArc for single and multiple brain metastases. J Appl Clin Med Phys. 2019;20(10):84–91.
doi: 10.1002/acm2.12716
Matthias G, Johannes R, Kurt B, et al. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol. 2012;7:63.
doi: 10.1186/1748-717X-7-63
Fujimoto D, von Eyben R, Gibbs IC, et al. Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: both late radiation necrosis and tumor progression can occur. J Neurooncol. 2018;136:207–12.
doi: 10.1007/s11060-017-2647-x
Kohutek ZA, Yamada Y, Chan TA, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125:149–56.
doi: 10.1007/s11060-015-1881-3
Tanabe S, Umetsu O, Sasage T, et al. Clinical commissioning of a new patient positioning system, SyncTraX FX4, for intracranial stereotactic radiotherapy. J Appl Clin Med Phys. 2018;19(6):149–58.
doi: 10.1002/acm2.12467
Oh SA, Park JW, Yea JW, et al. Evaluations of the setup discrepancy between BrainLAB 6D ExacTrac and cone-beam computed tomography used with the imaging guidance system Novalis-Tx for intracranial stereotactic radiosurgery. PLoS ONE. 2017;12(5):e0177798.
doi: 10.1371/journal.pone.0177798
Oh SA, Yea JW, Kang MK, et al. Analysis of the setup uncertainty and margin of the daily Exactrac 6D image guide system for patients with brain tumors. PLoS ONE. 2016;11:e0151709.
doi: 10.1371/journal.pone.0151709