Bacterial seed endophyte shapes disease resistance in rice.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
28
02
2020
accepted:
24
11
2020
pubmed:
6
1
2021
medline:
24
4
2021
entrez:
5
1
2021
Statut:
ppublish
Résumé
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.
Identifiants
pubmed: 33398157
doi: 10.1038/s41477-020-00826-5
pii: 10.1038/s41477-020-00826-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
60-72Références
Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E. & Leung, H. Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).
pubmed: 23153595
doi: 10.1016/j.tig.2012.10.011
Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).
pubmed: 25605935
pmcid: 4345613
doi: 10.1073/pnas.1414592112
Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).
doi: 10.1038/nclimate1990
Ham, J. H., Melanson, R. A. & Rush, M. C. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12, 329–339 (2011).
pubmed: 21453428
doi: 10.1111/j.1364-3703.2010.00676.x
Naughton, L. M. et al. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 18, 780–790 (2016).
pubmed: 26690879
doi: 10.1111/1462-2920.13189
Liu, X. et al. Biotoxin tropolone contamination associated with nationwide occurrence of pathogen Burkholderia plantarii in agricultural environments in China. Environ. Sci. Technol. 52, 5105–5114 (2018).
pubmed: 29589436
doi: 10.1021/acs.est.7b05915
Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).
pubmed: 25883357
doi: 10.1126/science.aaa1788
Jung, B. et al. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9, 31 (2018).
pubmed: 29295978
pmcid: 5750236
doi: 10.1038/s41467-017-02430-2
Miyagawa, H., Ozaki, K. & Kimura, T. Pathogenicity of Pseudomonas glumae and P. plantarii to the ears and leaves of graminaceous plants. Bull. Chugoku Natl Agric. Exp. Stn 3, 31–43 (1988).
Wang, M., Hashimoto, M. & Hashidoko, Y. Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by Trichoderma virens PS1-7 upon exposure to chemical stress from highly active iron chelators. Appl. Environ. Microbiol. 79, 1906–1914 (2013).
pubmed: 23315728
pmcid: 3592238
doi: 10.1128/AEM.03531-12
Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).
pubmed: 24223754
pmcid: 3817171
doi: 10.1371/journal.pone.0078024
Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).
pubmed: 28475891
doi: 10.1016/j.cell.2017.04.025
Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
pubmed: 29915067
pmcid: 6142251
doi: 10.1073/pnas.1806645115
Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).
pubmed: 24196324
doi: 10.1038/ismej.2013.196
Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).
pubmed: 23602102
doi: 10.1016/j.plantsci.2013.03.004
Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
pubmed: 29725101
doi: 10.1038/s41477-018-0139-4
Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).
doi: 10.1016/j.ese.2020.100061
Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).
pubmed: 31415751
pmcid: 6697056
doi: 10.1016/j.chom.2019.07.009
Berg, G., Grube, M., Schloter, M. & Smalla, K. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol. 5, 148 (2014).
pubmed: 24926286
pmcid: 4045152
doi: 10.3389/fmicb.2014.00148
Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).
pubmed: 30388454
pmcid: 6218654
doi: 10.1016/j.cell.2018.10.020
Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).
Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
pubmed: 28275097
pmcid: 5373366
doi: 10.1073/pnas.1616148114
Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100 (2018).
doi: 10.1038/nbt.4232
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
pubmed: 31036930
doi: 10.1038/s41587-019-0104-4
Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).
pubmed: 27019743
pmcid: 4806546
doi: 10.1038/nplants.2015.51
Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).
pubmed: 32576433
doi: 10.1016/j.tplants.2020.06.003
Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).
Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22 (2017).
pubmed: 28437661
doi: 10.1016/j.mib.2017.03.010
Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2017).
doi: 10.1007/s11104-017-3289-7
Sultan, S. E. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537–542 (2000).
pubmed: 11120476
doi: 10.1016/S1360-1385(00)01797-0
Wang, M. et al. Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Sci. Rep. 6, 22596 (2016).
pubmed: 26935539
pmcid: 4776283
doi: 10.1038/srep22596
Miwa, S. et al. Identification of the three genes involved in controlling production of a phytotoxin tropolone in Burkholderia plantarii. J. Bacteriol. 198, 1604–1609 (2016).
pubmed: 27002128
pmcid: 4959282
doi: 10.1128/JB.01028-15
Solis, R., Bertani, I., Degrassi, G., Devescovi, G. & Venturi, V. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii. FEMS Microbiol. Lett. 259, 106–112 (2006).
pubmed: 16684109
doi: 10.1111/j.1574-6968.2006.00254.x
Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).
doi: 10.1111/1758-2229.12181
Rybakova, D. et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5, 104 (2017).
Bergna, A. et al. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2, 183–193 (2018).
doi: 10.1094/PBIOMES-06-18-0029-R
Wassermann, B., Cernava, T., Muller, H., Berg, C. & Berg, G. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7, 108 (2019).
pubmed: 31340847
pmcid: 6651914
doi: 10.1186/s40168-019-0723-5
Berg, G. & Raaijmakers, J. M. Saving seed microbiomes. ISME J. 12, 1167–1170 (2018).
pubmed: 29335636
pmcid: 5931960
doi: 10.1038/s41396-017-0028-2
Kim, H., Nishiyama, M., Kunito, T. & Oyaizu, H. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).
doi: 10.1111/j.1365-2672.1998.00586.x
Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).
pubmed: 31558832
pmcid: 6774761
doi: 10.1038/s41559-019-0994-z
Rochefort, A. et al. Influence of environment and host plant genotype on the structure and diversity of the Brassica napus seed microbiota. Phytobiomes J. 3, 326–336 (2019).
doi: 10.1094/PBIOMES-06-19-0031-R
Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).
Kim, H., Lee, K. K., Jeon, J., Harris, W. A. & Lee, Y. H. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8, 20 (2020).
pubmed: 32059747
pmcid: 7023700
doi: 10.1186/s40168-020-00805-0
Cordovez, V., Dini-Andreote, F., Carrion, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).
pubmed: 31091418
doi: 10.1146/annurev-micro-090817-062524
Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
pubmed: 29789680
doi: 10.1038/s41579-018-0024-1
Thomas, F., Corre, E. & Cebron, A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME J. 13, 1814–1830 (2019).
pubmed: 30872807
pmcid: 6775975
doi: 10.1038/s41396-019-0394-z
Wang, H., Zhi, X. Y., Qiu, J., Shi, L. & Lu, Z. Characterization of a novel nicotine degradation gene cluster ndp in Sphingomonas melonis TY and its evolutionary analysis. Front. Microbiol. 8, 337 (2017).
pubmed: 28337179
pmcid: 5343071
Maeda, H. et al. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 365, 393 (2019).
pubmed: 31346065
doi: 10.1126/science.aax0379
Bakker, P., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).
pubmed: 29522740
doi: 10.1016/j.cell.2018.02.024
Scholthof, K. B. The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5, 152–156 (2007).
pubmed: 17191075
doi: 10.1038/nrmicro1596
Barillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).
doi: 10.1007/s13213-012-0491-y
Maeda, Y. et al. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56, 1031–1038 (2006).
pubmed: 16627650
doi: 10.1099/ijs.0.64184-0
Takeuchi, T., Sawada, H., Suzuki, F. & Matsuda, I. Specific detection of Burkolderia plantarii and B. glumae by PCR using primers selected from the 16S–23S rDNA spacer regions. Ann. Phytopath. Soc. Japan 63, 455–462 (1997).
doi: 10.3186/jjphytopath.63.455
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
pubmed: 22859206
pmcid: 4074413
doi: 10.1038/nature11237
Kusstatscher, P. et al. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome 7, 112 (2019).
pubmed: 31391094
pmcid: 6686572
doi: 10.1186/s40168-019-0728-0
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).
pubmed: 23995388
doi: 10.1038/nmeth.2634
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
pubmed: 27781170
pmcid: 5075697
doi: 10.7717/peerj.2584
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
pubmed: 17846036
doi: 10.1093/bioinformatics/btm404
Ayyagari, V. S. & Sreerama, K. Evaluation of haplotype diversity of Achatina fulica (Lissachatina) [Bowdich] from Indian sub-continent by means of 16S rDNA sequence and its phylogenetic relationships with other global populations. 3 Biotech 7, 252 (2017).
pubmed: 28721680
pmcid: 5515731
doi: 10.1007/s13205-017-0877-4
Lu, J. et al. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol. 167, 1100–1116 (2015).
pubmed: 25627217
pmcid: 4348761
doi: 10.1104/pp.114.252700
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Deng, X., Zhou, Y., Zheng, W., Bai, L. & Zhou, X. Dissipation dynamic and final residues of oxadiargyl in paddy fields using high-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS method. Int. J. Environ. Res. Public Health 15, 1680 (2018).
pmcid: 6121607
doi: 10.3390/ijerph15081680
Lang, Z. et al. Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil. Chemosphere 199, 210–217 (2018).
pubmed: 29438948
doi: 10.1016/j.chemosphere.2018.01.133
Sun, M., Li, H. & Jaisi, D. P. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil–water system. Water Res. 163, 114840 (2019).
pubmed: 31319360
doi: 10.1016/j.watres.2019.07.007