Multimode Optical Fibers for Optical Neural Interfaces.

Fiber photometry Multifunctional neural interfaces Multimode optical fibers Neurotechnologies Optical brain interfaces Opto-fMRI Tapered optical fibers

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
entrez: 5 1 2021
pubmed: 6 1 2021
medline: 16 2 2021
Statut: ppublish

Résumé

Although multiphoton microscopy enables optical control and monitoring of neural activity with single cells resolution over a depth of several hundreds of micrometers, the scattering nature of the brain tissue requires implantable optical neural interfaces to access subcortical structures. If micro light-emitting devices (μLEDs) and solid-state waveguides represent important technological advancements for the field, multimodal optical fibers (MMFs) are still the most diffused tool in neuroscience labs to interface with deep regions of the brain. At a first glance, MMFs can be seen as very limited systems. However, new studies and discoveries in optics, photonics, and technological solutions for their application to neuroscience research have enabled applications of MMF where competing technologies fail. In this framework, the chapter starts with a description of optical neural interfaces based on MMF, with specific reference on recent works analyzing the performances of this approach to deliver and collect light from scattering tissue. The discussion then focuses on how peculiar features of MMFs can be exploited to obtain unconventional applications, including brain imaging through a single multimode fiber, multifunctional neural interfaces, and depth-resolved light delivery and functional fluorescence collection.

Identifiants

pubmed: 33398843
doi: 10.1007/978-981-15-8763-4_40
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

565-583

Références

Abouraddy AF, Bayindir M, Benoit G et al (2007) Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater 6:336–347. https://doi.org/10.1038/nmat1889
doi: 10.1038/nmat1889 pubmed: 17471274
Acker L, Pino EN, Boyden ES, Desimone R (2016) FEF inactivation with improved optogenetic methods. Proc Natl Acad Sci U S A 113:E7297–E7306. https://doi.org/10.1073/pnas.1610784113
doi: 10.1073/pnas.1610784113 pubmed: 27807140 pmcid: 5135345
Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424. https://doi.org/10.1038/nature06310
doi: 10.1038/nature06310 pubmed: 17943086 pmcid: 6744371
Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8:988–990. https://doi.org/10.1038/nn1502
doi: 10.1038/nn1502 pubmed: 16007081
Aharoni D, Hoogland TM (2019) Circuit investigations with open-source miniaturized microscopes: past, present and future. Front Cell Neurosci 13:1–12. https://doi.org/10.3389/fncel.2019.00141
doi: 10.3389/fncel.2019.00141
Al-Juboori SI, Dondzillo A, Stubblefield EA et al (2013) Light scattering properties vary across different regions of the adult mouse brain. PLoS One 8:1–9. https://doi.org/10.1371/journal.pone.0067626
doi: 10.1371/journal.pone.0067626
Aravanis AM, Wang L-P, Zhang F et al (2007) An optical neural interface: in vivocontrol of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156. https://doi.org/10.1088/1741-2560/4/3/s02
doi: 10.1088/1741-2560/4/3/s02 pubmed: 17873414
Barretto RPJ, Messerschmidt B, Schnitzer MJ (2009) In vivo fluorescence imaging with high-resolution microlenses. Nat Methods 6:511–512. https://doi.org/10.1038/nmeth.1339
doi: 10.1038/nmeth.1339 pubmed: 19525959 pmcid: 2849805
Canales A, Jia X, Froriep UP et al (2015) Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol 33:277–284. https://doi.org/10.1038/nbt.3093
doi: 10.1038/nbt.3093 pubmed: 25599177
Canales A, Park S, Kilias A, Anikeeva P (2018) Multifunctional fibers as tools for neuroscience and neuroengineering. Acc Chem Res 51:829–838. https://doi.org/10.1021/acs.accounts.7b00558
doi: 10.1021/acs.accounts.7b00558 pubmed: 29561583
Christie IN, Wells JA, Southern P et al (2013) fMRI response to blue light delivery in the naïve brain: Implications for combined optogenetic fMRI studies. Neuroimage 66:634–641. https://doi.org/10.1016/J.NEUROIMAGE.2012.10.074
doi: 10.1016/J.NEUROIMAGE.2012.10.074 pubmed: 23128081
Cui G, Jun SB, Jin X et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242. https://doi.org/10.1038/nature11846
doi: 10.1038/nature11846 pubmed: 23354054 pmcid: 4039389
Cui G, Jun SB, Jin X et al (2014) Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat Protoc 9:1213–1228. https://doi.org/10.1038/nprot.2014.080
doi: 10.1038/nprot.2014.080 pubmed: 24784819 pmcid: 4100551
Davey CJ, Argyros A, Fleming SC, Solomon SG (2015) Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique. Appl Optics 54:10,068–10,072. https://doi.org/10.1364/AO.54.010068
doi: 10.1364/AO.54.010068
Desai M, Kahn I, Knoblich U et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405. https://doi.org/10.1152/jn.00828.2010
doi: 10.1152/jn.00828.2010 pubmed: 21160013
Di Leonardo R, Bianchi S (2011) Hologram transmission through multi-mode optical fibers. Opt Express 19:247–254. https://doi.org/10.1364/OE.19.000247
doi: 10.1364/OE.19.000247 pubmed: 21263563
Forli A, Vecchia D, Binini N et al (2018) Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep 22:3087–3098. https://doi.org/10.1016/j.celrep.2018.02.063
doi: 10.1016/j.celrep.2018.02.063 pubmed: 29539433 pmcid: 5863087
Frank JA, Antonini M-J, Anikeeva P (2019) Next-generation interfaces for studying neural function. Nat Biotechnol 37:1013–1023. https://doi.org/10.1038/s41587-019-0198-8
doi: 10.1038/s41587-019-0198-8 pubmed: 31406326 pmcid: 7243676
LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325. https://doi.org/10.1038/nmeth.1572
doi: 10.1038/nmeth.1572 pubmed: 21317908
Lee SJ, Chen Y, Lodder B, Sabatini BL (2019a) Monitoring behaviorally induced biochemical changes using fluorescence lifetime photometry. Front Neurosci 13:766
doi: 10.3389/fnins.2019.00766
Lee SJ, Lodder B, Chen Y, et al (2019b) Cell-type specific asynchronous modulation of PKA by dopamine during reward based learning. bioRxiv 839035. doi: https://doi.org/10.1101/839035
Leite IT, Turtaev S, Jiang X et al (2018) Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat Photonics 12:33–39. https://doi.org/10.1038/s41566-017-0053-8
doi: 10.1038/s41566-017-0053-8
Lu C, Park S, Richner TJ et al (2017) Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv 3:e1600955. https://doi.org/10.1126/sciadv.1600955
doi: 10.1126/sciadv.1600955 pubmed: 28435858 pmcid: 5371423
Lütcke H, Murayama M, Hahn T et al (2010) Optical recording of neuronal activity with a genetically encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circuits 4:1–12. https://doi.org/10.3389/fncir.2010.00009
doi: 10.3389/fncir.2010.00009
Muir J, Lorsch ZS, Ramakrishnan C et al (2018) In vivo fiber photometry reveals signature of future stress susceptibility in nucleus accumbens. Neuropsychopharmacology 43:255–263. https://doi.org/10.1038/npp.2017.122
doi: 10.1038/npp.2017.122 pubmed: 28589967
Ouzounov DG, Wang T, Wang M et al (2017) In vivo three-photon imaging of activity of GcamP6-labeled neurons deep in intact mouse brain. Nat Methods 14:388–390. https://doi.org/10.1038/nmeth.4183
doi: 10.1038/nmeth.4183 pubmed: 28218900 pmcid: 6441362
Owen SF, Liu MH, Kreitzer AC (2019) Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci 22:1061–1065. https://doi.org/10.1038/s41593-019-0422-3
doi: 10.1038/s41593-019-0422-3 pubmed: 31209378 pmcid: 6592769
Park S, Guo Y, Jia X et al (2017) One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci 20:612–619. https://doi.org/10.1038/nn.4510
doi: 10.1038/nn.4510 pubmed: 28218915 pmcid: 5374019
Patel AA, McAlinden N, Mathieson K, Sakata S (2020) Simultaneous electrophysiological recording and fiber photometry in freely behaving mice. Front Neurosci 14:807602. https://doi.org/10.1101/807602
doi: 10.1101/807602
Patriarchi T, Cho JR, Merten K et al (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:1420. https://doi.org/10.1126/science.aat4422
doi: 10.1126/science.aat4422
Piatkevich KD, Bensussen S, Tseng H et al (2019) Population imaging of neural activity in awake behaving mice. Nature 574:413. https://doi.org/10.1038/s41586-019-1641-1
doi: 10.1038/s41586-019-1641-1 pubmed: 31597963 pmcid: 6858559
Pikálek T, Trägårdh J, Simpson S, Čižmár T (2019) Wavelength dependent characterization of a multimode fibre endoscope. Opt Express 27:28,239–28,253. https://doi.org/10.1364/OE.27.028239
doi: 10.1364/OE.27.028239
Pisanello F (2019) Implantable micro and nanophotonic devices: toward a new generation of neural interfaces. Microelectron Eng 215:110979. https://doi.org/10.1016/j.mee.2019.110979
doi: 10.1016/j.mee.2019.110979
Pisanello F, Sileo L, Oldenburg IA et al (2014) Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82:1245. https://doi.org/10.1016/j.neuron.2014.04.041
doi: 10.1016/j.neuron.2014.04.041 pubmed: 24881834 pmcid: 4256382
Pisanello F, Sileo L, Pisanello M, et al (2015a) Nanomachined tapered optical fibers for in vivo optogenetics. In: IEEE-NANO 2015—15th international conference on nanotechnology
Pisanello M, Della Patria A, Sileo L et al (2015b) Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity. Biomed Opt Express 6:4014. https://doi.org/10.1364/BOE.6.004014
doi: 10.1364/BOE.6.004014 pubmed: 26504650 pmcid: 4605059
Pisanello F, Sileo L, De Vittorio M (2016) Micro- and nanotechnologies for optical neural interfaces. Front Neurosci 10:70. https://doi.org/10.3389/fnins.2016.00070
doi: 10.3389/fnins.2016.00070 pubmed: 27013939 pmcid: 4781845
Pisanello F, Mandelbaum G, Pisanello M et al (2017) Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat Neurosci 20:1180. https://doi.org/10.1038/nn.4591
doi: 10.1038/nn.4591 pubmed: 28628101 pmcid: 5533215
Pisanello M, Pisano F, Sileo L et al (2018) Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci Rep 8:4467. https://doi.org/10.1038/s41598-018-22790-z
doi: 10.1038/s41598-018-22790-z pubmed: 29535413 pmcid: 5849750
Pisanello M, Pisano F, Hyun M et al (2019) The three-dimensional signal collection field for fiber photometry in brain tissue. Front Neurosci 13:82
doi: 10.3389/fnins.2019.00082
Pisano F, Pisanello M, Sileo L et al (2018) Focused ion beam nanomachining of tapered optical fibers for patterned light delivery. Microelectron Eng 195:41–49. https://doi.org/10.1016/j.mee.2018.03.023
doi: 10.1016/j.mee.2018.03.023 pubmed: 31198228 pmcid: 6565430
Pisano F, Pisanello M, Lee SY et al (2019) Depth resolved fiber photometry with a single tapered optical fiber implant. Nat Methods 16:1185–1192
doi: 10.1038/s41592-019-0581-x
Plöschner M, Kollárová V, Dostál Z et al (2015a) Multimode fibre: light-sheet microscopy at the tip of a needle. Sci Rep 5:1–7. https://doi.org/10.1038/srep18050
doi: 10.1038/srep18050
Plöschner M, Tyc T, Čižmár T (2015b) Seeing through chaos in multimode fibres. Nat Photonics 9:529–535. https://doi.org/10.1038/nphoton.2015.112
doi: 10.1038/nphoton.2015.112
Rizzo A, Lemma ED, Pisano F et al (2018) Laser micromachining of tapered optical fibers for spatially selective control of neural activity. Microelectron Eng 192:88–95. https://doi.org/10.1016/J.MEE.2018.02.010
doi: 10.1016/J.MEE.2018.02.010
Rungta RL, Osmanski B-F, Boido D et al (2017) Light controls cerebral blood flow in naive animals. Nat Commun 8:14,191. https://doi.org/10.1038/ncomms14191
doi: 10.1038/ncomms14191
Schlegel F, Sych Y, Schroeter A et al (2018) Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat Protoc 13:840–855. https://doi.org/10.1038/nprot.2018.003
doi: 10.1038/nprot.2018.003 pubmed: 29599439
Schmid F, Wachsmuth L, Schwalm M et al (2016) Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca
doi: 10.1177/0271678X15619428 pubmed: 26661247
Schulz K, Sydekum E, Krueppel R et al (2012) Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 9:597–602. https://doi.org/10.1038/nmeth.2013
doi: 10.1038/nmeth.2013 pubmed: 22561989
Sparta DR, Stamatakis AM, Phillips JL et al (2011) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7:12
doi: 10.1038/nprot.2011.413
Stujenske JM, Spellman T, Gordon JA (2015) Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep 12:525–534. https://doi.org/10.1016/j.celrep.2015.06.036
doi: 10.1016/j.celrep.2015.06.036 pubmed: 26166563 pmcid: 4512881
Sych Y, Chernysheva M, Sumanovski LT, Helmchen F (2019) High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat Methods 16:553–560. https://doi.org/10.1038/s41592-019-0400-4
doi: 10.1038/s41592-019-0400-4 pubmed: 31086339
Turtaev S, Leite IT, Altwegg-Boussac T et al (2018) High-fidelity multimode fibre-based endoscopy for deep-brain in vivo imaging. Light Sci Appl 7:92
doi: 10.1038/s41377-018-0094-x
Vasquez-Lopez SA, Turcotte R, Koren V et al (2018) Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light Sci Appl 7:110. https://doi.org/10.1038/s41377-018-0111-0
doi: 10.1038/s41377-018-0111-0 pubmed: 30588295 pmcid: 6298975
Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16:103–129. https://doi.org/10.1146/annurev-bioeng-071813-104733
doi: 10.1146/annurev-bioeng-071813-104733 pubmed: 25014785 pmcid: 4163158
Yang Y, Liu N, He Y et al (2018) Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 9:1504. https://doi.org/10.1038/s41467-018-03719-6
doi: 10.1038/s41467-018-03719-6 pubmed: 29666364 pmcid: 5904127
Yildirim M, Sugihara H, So PTC, Sur M (2019) Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy. Nat Commun 10:177. https://doi.org/10.1038/s41467-018-08179-6
doi: 10.1038/s41467-018-08179-6 pubmed: 30635577 pmcid: 6329792
Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34. https://doi.org/10.1016/J.NEURON.2011.06.004
doi: 10.1016/J.NEURON.2011.06.004 pubmed: 21745635
Yona G, Meitav N, Kahn I, Shoham S (2016) Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications. eNeuro 3:420–424. https://doi.org/10.1523/ENEURO.0059-15.2015
doi: 10.1523/ENEURO.0059-15.2015
Zhao Z, Luan L, Wei X et al (2017) Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett 17:4588–4595. https://doi.org/10.1021/acs.nanolett.7b00956
doi: 10.1021/acs.nanolett.7b00956 pubmed: 28682082 pmcid: 5869028

Auteurs

Massimo De Vittorio (M)

Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano (LE), Italy. massimo.devittorio@iit.it.
Dip. di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy. massimo.devittorio@iit.it.

Ferruccio Pisanello (F)

Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano (LE), Italy.

Articles similaires

Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted
Protoporphyrins Photochemotherapy Humans Aminolevulinic Acid Chlorophyllides
Aluminum Carbon Quantum Dots Spectrometry, Fluorescence Limit of Detection

Classifications MeSH