Taking Advantage of the Morpheein Behavior of Peroxiredoxin in Bionanotechnology.


Journal

Bioconjugate chemistry
ISSN: 1520-4812
Titre abrégé: Bioconjug Chem
Pays: United States
ID NLM: 9010319

Informations de publication

Date de publication:
20 01 2021
Historique:
pubmed: 8 1 2021
medline: 15 9 2021
entrez: 7 1 2021
Statut: ppublish

Résumé

Morpheeins are proteins that reversibly assemble into different oligomers, whose architectures are governed by conformational changes of the subunits. This property could be utilized in bionanotechnology where the building of nanometric and new high-ordered structures is required. By capitalizing on the adaptability of morpheeins to create patterned structures and exploiting their inborn affinity toward inorganic and living matter, "bottom-up" creation of nanostructures could be achieved using a single protein building block, which may be useful as such or as scaffolds for more complex materials. Peroxiredoxins represent the paradigm of a morpheein that can be applied to bionanotechnology. This review describes the structural and functional transitions that peroxiredoxins undergo to form high-order oligomers, e.g., rings, tubes, particles, and catenanes, and reports on the chemical and genetic engineering approaches to employ them in the generation of responsive nanostructures and nanodevices. The usefulness of the morpheeins' behavior is emphasized, supporting their use in future applications.

Identifiants

pubmed: 33411522
doi: 10.1021/acs.bioconjchem.0c00621
pmc: PMC8023583
doi:

Substances chimiques

Biopolymers 0
Proteins 0
Peroxiredoxins EC 1.11.1.15

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

43-62

Références

Nat Nanotechnol. 2010 Jun;5(6):451-7
pubmed: 20400968
Biochemistry. 2002 Apr 30;41(17):5493-504
pubmed: 11969410
J Mol Biol. 2013 Nov 15;425(22):4556-68
pubmed: 24021815
Cell. 2004 May 28;117(5):625-35
pubmed: 15163410
PLoS One. 2015 Apr 23;10(4):e0123303
pubmed: 25906064
Biopolymers. 2012 Aug;97(8):607-16
pubmed: 22605552
ACS Chem Biol. 2018 Aug 17;13(8):2190-2202
pubmed: 29800515
Structure. 2012 Aug 8;20(8):1374-83
pubmed: 22727814
Structure. 2005 Nov;13(11):1661-4
pubmed: 16271889
Free Radic Biol Med. 2020 Feb 1;147:200-211
pubmed: 31870799
Nano Lett. 2006 Sep;6(9):2121-9
pubmed: 16968037
Micron. 2007;38(1):29-39
pubmed: 16839769
J Mater Chem B. 2016 May 21;4(19):3169-3190
pubmed: 32263253
Biomacromolecules. 2016 Feb 8;17(2):514-22
pubmed: 26686226
FEBS Lett. 2006 Jan 9;580(1):351-5
pubmed: 16376335
Nanoscale. 2012 Nov 21;4(22):7038-45
pubmed: 23044648
Sci Rep. 2015 Jun 04;5:10886
pubmed: 26041015
Trends Biochem Sci. 2015 Aug;40(8):435-45
pubmed: 26067716
FEBS J. 2015 Aug;282(15):2827-45
pubmed: 26059483
Antioxid Redox Signal. 2011 Jul 1;15(1):99-109
pubmed: 20712415
J Phys Chem B. 2016 Jul 7;120(26):6352-7
pubmed: 27135176
Structure. 2015 May 5;23(5):912-920
pubmed: 25914057
J Mol Recognit. 2009 Jul-Aug;22(4):270-9
pubmed: 19235144
Annu Rev Virol. 2016 Sep 29;3(1):373-386
pubmed: 27482901
ACS Nano. 2014 May 27;8(5):4705-19
pubmed: 24689973
Nano Lett. 2007 Jun;7(6):1575-9
pubmed: 17530810
J Mater Chem B. 2017 Jun 21;5(23):4393-4405
pubmed: 32263966
Structure. 2000 Jun 15;8(6):605-15
pubmed: 10873855
FEBS J. 2009 May;276(9):2478-93
pubmed: 19476489
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3733-8
pubmed: 18310321
Bioelectrochemistry. 2020 Dec;136:107629
pubmed: 32818758
Biomol Detect Quantif. 2015 Mar;3:1-8
pubmed: 26753127
J Tissue Eng Regen Med. 2017 Sep;11(9):2462-2470
pubmed: 29737636
Nanomedicine. 2017 Feb;13(2):411-420
pubmed: 27553073
Chem Commun (Camb). 2013 Apr 7;49(27):2825-7
pubmed: 23443967
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5165-70
pubmed: 11959965
Free Radic Biol Med. 2010 Jan 15;48(2):292-7
pubmed: 19892013
J Mol Biol. 2010 Sep 10;402(1):194-209
pubmed: 20643143
PLoS Med. 2007 Jun;4(6):e206
pubmed: 17579510
Nanoscale. 2016 Mar 28;8(12):6739-53
pubmed: 26952635
Chem Soc Rev. 2016 Jan 7;45(1):24-39
pubmed: 26497225
ACS Appl Mater Interfaces. 2017 Mar 29;9(12):10453-10460
pubmed: 28271705
Nature. 2011 Jun 08;474(7350):179-83
pubmed: 21654799
Small. 2007 Nov;3(11):1950-6
pubmed: 17935079
Protein Sci. 2011 Jun;20(6):1069-76
pubmed: 21465612
ACS Nano. 2016 Jan 26;10(1):421-8
pubmed: 26634314
Nanotechnology. 2017 Jul 14;28(28):282002
pubmed: 28590253
Biochemistry. 2009 Jun 9;48(22):4666-76
pubmed: 19368357
Nat Mater. 2002 Dec;1(4):247-52
pubmed: 12618787
Trends Biochem Sci. 2003 Jan;28(1):32-40
pubmed: 12517450
Nat Med. 2008 Apr;14(4):407-12
pubmed: 18345010
Chem Soc Rev. 2016 May 21;45(10):2756-67
pubmed: 27080059
Redox Biol. 2015 Dec;6:326-333
pubmed: 26335398
Chem Soc Rev. 2013 Apr 7;42(7):2610-53
pubmed: 23093173
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:393-401
pubmed: 28415477
BMC Struct Biol. 2012 Mar 19;12:2
pubmed: 22429898
FEBS J. 2009 May;276(9):2469-77
pubmed: 19476488
ACS Infect Dis. 2020 Mar 13;6(3):393-405
pubmed: 31939288
Bioconjug Chem. 2021 Jan 20;32(1):153-160
pubmed: 33334100
J Am Chem Soc. 2005 Mar 9;127(9):2800-1
pubmed: 15740085
Biointerphases. 2017 Nov 15;12(4):04E405
pubmed: 29141412
Nanoscale. 2014 Jul 21;6(14):8052-61
pubmed: 24910403
Dalton Trans. 2016 Jul 28;45(28):11261-6
pubmed: 27353236
Protein Sci. 2013 Oct;22(10):1445-52
pubmed: 23934758
Int J Mol Sci. 2020 Jul 31;21(15):
pubmed: 32752132
J Mol Biol. 2009 May 29;389(1):167-82
pubmed: 19362563
Nano Lett. 2018 Aug 8;18(8):5138-5145
pubmed: 30047268
FEBS Lett. 2009 Jun 18;583(12):1809-16
pubmed: 19464293
Nano Lett. 2019 Nov 13;19(11):7553-7562
pubmed: 31587559
Nat Commun. 2019 Feb 15;10(1):778
pubmed: 30770832
Chem Soc Rev. 2018 May 21;47(10):3574-3620
pubmed: 29479622
Structure. 2012 Mar 7;20(3):429-39
pubmed: 22405002
J Biomed Mater Res A. 2018 Jun;106(6):1585-1594
pubmed: 29424473
J Biol Chem. 2008 Oct 24;283(43):28873-80
pubmed: 18725414
J Inorg Biochem. 2018 May;182:103-112
pubmed: 29454149
Nature. 1988 Oct 20;335(6192):740-3
pubmed: 3173493
ACS Nano. 2014 Apr 22;8(4):3743-51
pubmed: 24601558
Nat Mater. 2004 Oct;3(10):692-5
pubmed: 15359342
Biochim Biophys Acta. 2013 Jun;1830(6):3745-55
pubmed: 23396000
Nano Lett. 2019 Feb 13;19(2):722-731
pubmed: 30673248
Beilstein J Nanotechnol. 2016 Mar 04;7:351-63
pubmed: 27335729
Sci Rep. 2018 Aug 23;8(1):12652
pubmed: 30140073
Chem Rev. 2015 Mar 11;115(5):2174-95
pubmed: 25700113
Philos Trans A Math Phys Eng Sci. 2010 Mar 28;368(1915):1333-83
pubmed: 20156828
Nanomedicine (Lond). 2018 Dec;13(24):3091-3106
pubmed: 30451074
Mol Cells. 2010 Feb 28;29(2):145-51
pubmed: 20082221
J Am Chem Soc. 2013 Aug 7;135(31):11509-12
pubmed: 23875534
Biochim Biophys Acta. 2001 Jun 11;1547(2):221-34
pubmed: 11410278
Mol Biochem Parasitol. 2016 Mar-Apr;206(1-2):2-12
pubmed: 27002228
Structure. 2010 Aug 11;18(8):1022-31
pubmed: 20696402
Nat Commun. 2015 Mar 27;6:6705
pubmed: 25813537
PLoS One. 2012;7(2):e32555
pubmed: 22389709
ACS Chem Biol. 2018 Jun 15;13(6):1438-1446
pubmed: 29787234
Biomacromolecules. 2014 May 12;15(5):1871-81
pubmed: 24749984
J Cell Biol. 2006 Dec 4;175(5):779-89
pubmed: 17145963
J Biol Chem. 2003 Aug 29;278(35):32631-7
pubmed: 12773537
Chem Sci. 2018 Jun 18;9(28):6099-6106
pubmed: 30090298
Proteins. 2011 Mar;79(3):947-64
pubmed: 21287625
ACS Nano. 2016 Mar 22;10(3):2995-3014
pubmed: 26862780
Biochem Biophys Res Commun. 2019 Apr 30;512(2):263-268
pubmed: 30885432
Adv Healthc Mater. 2015 Nov 18;4(16):2557-86
pubmed: 26461979
Biochim Biophys Acta Gen Subj. 2020 Aug;1864(8):129617
pubmed: 32304715
Nano Lett. 2012 Apr 11;12(4):2056-9
pubmed: 22414047
J Virol. 2014 Jan;88(1):325-38
pubmed: 24155388
Nanoscale. 2016 Dec 1;8(47):19491-19509
pubmed: 27878179
Subcell Biochem. 2017;83:127-147
pubmed: 28271475
ACS Nano. 2013 Nov 26;7(11):10197-210
pubmed: 24134196
Methods Enzymol. 2009;466:409-30
pubmed: 21609870
Small. 2009 Sep;5(18):2077-84
pubmed: 19562822
Trends Biochem Sci. 2005 Sep;30(9):490-7
pubmed: 16023348
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Sep-Oct;4(5):575-85
pubmed: 22753264
Structure. 2016 Jul 6;24(7):1120-9
pubmed: 27238969
Free Radic Biol Med. 2008 Sep 1;45(5):549-61
pubmed: 18544350
Nat Chem Biol. 2013 Mar;9(3):143-4
pubmed: 23416399
Nanoscale. 2018 Sep 20;10(36):17105-17111
pubmed: 30179242
J Biol Chem. 2004 Dec 3;279(49):51516-23
pubmed: 15371455
Nucleic Acids Res. 2011 Jan;39(Database issue):D332-7
pubmed: 21036863
Biomaterials. 2018 Feb;155:236-250
pubmed: 29195230
Curr Biol. 2009 Jan 13;19(1):R25-6
pubmed: 19138586
J Control Release. 2019 Jun 10;303:302-318
pubmed: 31009647
Nano Lett. 2008 Feb;8(2):473-7
pubmed: 18193911

Auteurs

Matteo Ardini (M)

Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.

Andrea Bellelli (A)

Department of Biochemical Sciences "A. Rossi Fanelli", University of Roma "Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy.

David L Williams (DL)

Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States.

Luana Di Leandro (L)

Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.

Francesco Giansanti (F)

Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.

Annamaria Cimini (A)

Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.

Rodolfo Ippoliti (R)

Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.

Francesco Angelucci (F)

Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Computational Biology ROC Curve Algorithms Proteins

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing
Colorimetry Captopril Humans Alloys Limit of Detection

Classifications MeSH