Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 01 2021
Historique:
received: 25 06 2020
accepted: 03 12 2020
entrez: 8 1 2021
pubmed: 9 1 2021
medline: 31 7 2021
Statut: epublish

Résumé

Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.

Identifiants

pubmed: 33414495
doi: 10.1038/s41598-020-79139-8
pii: 10.1038/s41598-020-79139-8
pmc: PMC7791137
doi:

Substances chimiques

HSP90 Heat-Shock Proteins 0
Immunosuppressive Agents 0
Carbon Monoxide 7U1EE4V452
Cyclophosphamide 8N3DW7272P
C-Reactive Protein 9007-41-4

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1

Références

Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390, 1685–1699 (2017).
pubmed: 28413064 doi: 10.1016/S0140-6736(17)30933-9 pmcid: 28413064
Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).
pubmed: 31712723 doi: 10.1038/s41584-019-0322-7 pmcid: 31712723
Denton, C. P., Wells, A. U. & Coghlan, J. G. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 14, 511–527 (2018).
pubmed: 30111804 doi: 10.1038/s41584-018-0062-0 pmcid: 30111804
Khanna, D. et al. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am. J. Respir. Crit. Care. Med. 201, 650–660 (2020).
pubmed: 31841044 pmcid: 7068837 doi: 10.1164/rccm.201903-0563CI
Perelas, A., Silver, R. M., Arrossi, A. V. & Highland, K. B. Systemic sclerosis-associated interstitial lung disease. Lancet. Respir. Med. 8, 304–320 (2020).
pubmed: 32113575 doi: 10.1016/S2213-2600(19)30480-1 pmcid: 32113575
Elhai, M., Avouac, J. & Allanore, Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand?. Semin. Arthritis. Rheum. https://doi.org/10.1016/j.semarthrit.2020.01.006 (2020).
doi: 10.1016/j.semarthrit.2020.01.006 pubmed: 32165035 pmcid: 32165035
Distler, J. H. et al. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis. Rheumatol. 69, 257–267 (2017).
pubmed: 27636741 doi: 10.1002/art.39865 pmcid: 27636741
Schlesinger, M. J. Heat shock proteins. J. Biol. Chem. 256, 12111–12114 (1990).
doi: 10.1016/S0021-9258(19)38314-0
Santoro, M. G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55–63 (2000).
pubmed: 10605935 doi: 10.1016/S0006-2952(99)00299-3 pmcid: 10605935
Guo, J., Chang, C. & Li, W. The role of secreted heat shock protein-90 (Hsp90) in wound healing—How could it shape future therapeutics?. Expert Rev. Proteomics. 14, 665–675 (2017).
pubmed: 28715921 pmcid: 6557287 doi: 10.1080/14789450.2017.1355244
Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).
pubmed: 2853609 doi: 10.1146/annurev.ge.22.120188.003215 pmcid: 2853609
Burrows, F., Zhang, H. & Kamal, A. Hsp90 activation and cell cycle regulation. Cell Cycle 3, 1530–1536 (2004).
pubmed: 15539946 doi: 10.4161/cc.3.12.1277 pmcid: 15539946
Echeverria, P. C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. Mol. Cell. Res. 1803, 641–649 (2010).
doi: 10.1016/j.bbamcr.2009.11.012
Pearl, L. H. & Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol. 10, 46–51 (2000).
pubmed: 10679459 doi: 10.1016/S0959-440X(99)00047-0 pmcid: 10679459
McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).
pubmed: 17923092 doi: 10.1016/j.cell.2007.07.036 pmcid: 17923092
Zuehlke, A. D., Moses, M. A. & Neckers, L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. B. Biol. Sci. 373, 20160527 (2018).
doi: 10.1098/rstb.2016.0527
Tsan, M. F. & Gao, B. Cytokine function of heat shock proteins. AJP Cell. Physiol. 286, C739-744 (2004).
doi: 10.1152/ajpcell.00364.2003
Bohonowych, J. E. et al. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: Implications for the prostate tumor microenvironment. Prostate 74, 395–407 (2014).
pubmed: 24338924 doi: 10.1002/pros.22761 pmcid: 24338924
Chung, S. W. et al. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 378, 444–449 (2009).
pubmed: 19028451 doi: 10.1016/j.bbrc.2008.11.063
Beyer, C. & Distler, J. H. W. Tyrosine kinase signaling in fibrotic disorders. Biochim. Biophys. Acta. Mol. Basis. Dis. 1832, 897–904 (2013).
doi: 10.1016/j.bbadis.2012.06.008
Koga, F. et al. Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc. Natl. Acad. Sci. 103, 11318–11322 (2006).
pubmed: 16844778 doi: 10.1073/pnas.0604705103 pmcid: 16844778
Skhirtladze, C. et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthriti. Rheum. 58, 1475–1484 (2008).
doi: 10.1002/art.23436
Wrighton, K. H., Lin, X. & Feng, X. H. Critical regulation of TGFbeta signaling by Hsp90. Proc. Natl. Acad. Sci. USA 105, 9244–9249 (2008).
pubmed: 18591668 doi: 10.1073/pnas.0800163105 pmcid: 18591668
Tomcik, M. et al. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann. Rheum. Dis. 73, 1215–1222 (2014).
pubmed: 23661493 doi: 10.1136/annrheumdis-2012-203095 pmcid: 23661493
Gao, C. et al. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 25, 849–855 (2019).
pubmed: 31244417 doi: 10.2174/1381612825666190503145944 pmcid: 31244417
Norton, P. M., Isenberg, D. A. & Latchman, D. S. Elevated levels of the 90 kd heat shock protein in a proportion of SLE patients with active disease. J. Autoimmun. 2, 187–195 (1989).
pubmed: 2765096 doi: 10.1016/0896-8411(89)90154-6 pmcid: 2765096
Bubova, K. et al. Plasma Hsp90 levels in patients with spondyloarthritis and their relation to structural changes: A cross-sectional study. Biomark. Med. https://doi.org/10.2217/bmm-2020-0360 .
Storkanova, H. et al. Increased Hsp90 in muscle tissue and plasma associates with disease activity and skeletal muscle involvement in patients with idiopathic inflammatory myopathies. Ann. Rheum. Dis. 79(supplement 1), 410 (2020).
Ocaña, G. J. et al. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 151, 198–210 (2017).
pubmed: 28190264 pmcid: 5418464 doi: 10.1111/imm.12723
Tas, F., Bilgin, E., Erturk, K. & Duranyildiz, D. Clinical significance of circulating serum cellular heat shock protein 90 (HSP90) level in patients with cutaneous malignant melanoma. Asian. Pacific. J. Cancer Prev. 18, 599–601 (2017).
Fu, Y. et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: An official, large-scale, and multicenter clinical trial. E. Bio. Medicine 24, 56–63 (2017).
Shi, Y. et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin. Cancer. Res. 20, 6016–6022 (2014).
pubmed: 25316816 doi: 10.1158/1078-0432.CCR-14-0174 pmcid: 25316816
Muangchan, C. & Pope, J. E. The significance of interleukin-6 and C-reactive protein in systemic sclerosis: A systematic literature review. Clin. Exp. Rheumatol. 31, 122–134 (2013).
Sontake, V. et al. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2, e91454 (2017).
pubmed: 28239659 pmcid: 5313067 doi: 10.1172/jci.insight.91454
Koh, R. Y. et al. Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol. Med. Rep. 11, 3808–3813 (2015).
pubmed: 25585520 doi: 10.3892/mmr.2015.3193 pmcid: 25585520
O’Reilly, S., Cant, R., Ciechomska, M. & Van Laar, J. M. Interleukin-6: A new therapeutic target in systemic sclerosis?. Clin. Transl. Immunol. 2, e4 (2013).
doi: 10.1038/cti.2013.2
Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).
pubmed: 27156934 doi: 10.1016/S0140-6736(16)00232-4 pmcid: 27156934
Narváez, J. et al. Effectiveness and safety of tocilizumab for the treatment of refractory systemic sclerosis associated interstitial lung disease: A case series. Ann. Rheum. Dis. 78, e123 (2019).
pubmed: 30352892 doi: 10.1136/annrheumdis-2018-214449 pmcid: 30352892
O’Reilly, S., Ciechomska, M., Cant, R. & Van Laar, J. M. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via gremlin protein. J. Biol. Chem. 289, 9952–9960 (2014).
pubmed: 24550394 pmcid: 3975039 doi: 10.1074/jbc.M113.545822
Sato, N. et al. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem. Biophys. Res. Commun. 300, 847–852 (2003).
pubmed: 12559950 doi: 10.1016/S0006-291X(02)02941-8 pmcid: 12559950
Nannini, C., West, C. P., Erwin, P. J. & Matteson, E. L. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: A systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res. Ther. 10, R124 (2008).
pubmed: 18937831 pmcid: 2592814 doi: 10.1186/ar2534
Chakraborty, A., Boel, N.M.-E. & Edkins, A. L. HSP90 interacts with the fibronectin N-terminal domains and increases matrix formation. Cells 9, 272 (2020).
pmcid: 7072298 doi: 10.3390/cells9020272
Van Den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).
pubmed: 24122180 pmcid: 3930146 doi: 10.1002/art.38098
Silver, R. M., Miller, K. S., Kinsella, M. B., Smith, E. A. & Schabel, S. I. Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am. J. Med. 88, 470–476 (1990).
pubmed: 2337105 doi: 10.1016/0002-9343(90)90425-D pmcid: 2337105
Bombardieri, S., Medsger, T. A. Jr., Silman, A. J. & Valentini, G. The assessment of the patient with systemic sclerosis. Introduction. Clin. Exp. Rheumatol. 21, S2–S4 (2003).
pubmed: 12889213 pmcid: 12889213
Clements, P. J. et al. Skin thickness score in systemic sclerosis: An assessment of interobserver variability in 3 independent studies. J. Rheumatol. 20, 1892–1896 (1993).
pubmed: 8308774 pmcid: 8308774
Valentini, G., Silman, A. J. & Veale, D. Assessment of disease activity. Clin. Exp. Rheumatol. 21, S39-41 (2003).
pubmed: 12889221 pmcid: 12889221
Crapo, O. et al. Standardization of spirometry, 1994 update. American Thoracic Society. Am. J. Respir. Crit. Care. Med. 152, 1107–1136 (1995).
doi: 10.1164/ajrccm.152.3.7663792

Auteurs

Hana Štorkánová (H)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Sabína Oreská (S)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Maja Špiritović (M)

Institute of Rheumatology, Prague, Czech Republic.
Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic.

Barbora Heřmánková (B)

Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic.

Kristýna Bubová (K)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Martin Komarc (M)

Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic.

Karel Pavelka (K)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Jiří Vencovský (J)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Jörg H W Distler (JHW)

Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.

Ladislav Šenolt (L)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Radim Bečvář (R)

Institute of Rheumatology, Prague, Czech Republic.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Michal Tomčík (M)

Institute of Rheumatology, Prague, Czech Republic. tomcik@revma.cz.
Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic. tomcik@revma.cz.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH