Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study.
Adult
Aged
C-Reactive Protein
/ metabolism
Carbon Monoxide
/ metabolism
Case-Control Studies
Cross-Sectional Studies
Cyclophosphamide
/ therapeutic use
Dermatitis
/ metabolism
Female
HSP90 Heat-Shock Proteins
/ blood
Humans
Immunosuppressive Agents
/ therapeutic use
Longitudinal Studies
Lung
/ physiopathology
Lung Diseases, Interstitial
/ blood
Male
Middle Aged
Prospective Studies
Pulmonary Diffusing Capacity
/ drug effects
Scleroderma, Systemic
/ blood
Skin
/ physiopathology
Vital Capacity
/ drug effects
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
07 01 2021
07 01 2021
Historique:
received:
25
06
2020
accepted:
03
12
2020
entrez:
8
1
2021
pubmed:
9
1
2021
medline:
31
7
2021
Statut:
epublish
Résumé
Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.
Identifiants
pubmed: 33414495
doi: 10.1038/s41598-020-79139-8
pii: 10.1038/s41598-020-79139-8
pmc: PMC7791137
doi:
Substances chimiques
HSP90 Heat-Shock Proteins
0
Immunosuppressive Agents
0
Carbon Monoxide
7U1EE4V452
Cyclophosphamide
8N3DW7272P
C-Reactive Protein
9007-41-4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1Références
Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390, 1685–1699 (2017).
pubmed: 28413064
doi: 10.1016/S0140-6736(17)30933-9
pmcid: 28413064
Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).
pubmed: 31712723
doi: 10.1038/s41584-019-0322-7
pmcid: 31712723
Denton, C. P., Wells, A. U. & Coghlan, J. G. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 14, 511–527 (2018).
pubmed: 30111804
doi: 10.1038/s41584-018-0062-0
pmcid: 30111804
Khanna, D. et al. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am. J. Respir. Crit. Care. Med. 201, 650–660 (2020).
pubmed: 31841044
pmcid: 7068837
doi: 10.1164/rccm.201903-0563CI
Perelas, A., Silver, R. M., Arrossi, A. V. & Highland, K. B. Systemic sclerosis-associated interstitial lung disease. Lancet. Respir. Med. 8, 304–320 (2020).
pubmed: 32113575
doi: 10.1016/S2213-2600(19)30480-1
pmcid: 32113575
Elhai, M., Avouac, J. & Allanore, Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand?. Semin. Arthritis. Rheum. https://doi.org/10.1016/j.semarthrit.2020.01.006 (2020).
doi: 10.1016/j.semarthrit.2020.01.006
pubmed: 32165035
pmcid: 32165035
Distler, J. H. et al. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis. Rheumatol. 69, 257–267 (2017).
pubmed: 27636741
doi: 10.1002/art.39865
pmcid: 27636741
Schlesinger, M. J. Heat shock proteins. J. Biol. Chem. 256, 12111–12114 (1990).
doi: 10.1016/S0021-9258(19)38314-0
Santoro, M. G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55–63 (2000).
pubmed: 10605935
doi: 10.1016/S0006-2952(99)00299-3
pmcid: 10605935
Guo, J., Chang, C. & Li, W. The role of secreted heat shock protein-90 (Hsp90) in wound healing—How could it shape future therapeutics?. Expert Rev. Proteomics. 14, 665–675 (2017).
pubmed: 28715921
pmcid: 6557287
doi: 10.1080/14789450.2017.1355244
Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).
pubmed: 2853609
doi: 10.1146/annurev.ge.22.120188.003215
pmcid: 2853609
Burrows, F., Zhang, H. & Kamal, A. Hsp90 activation and cell cycle regulation. Cell Cycle 3, 1530–1536 (2004).
pubmed: 15539946
doi: 10.4161/cc.3.12.1277
pmcid: 15539946
Echeverria, P. C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. Mol. Cell. Res. 1803, 641–649 (2010).
doi: 10.1016/j.bbamcr.2009.11.012
Pearl, L. H. & Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol. 10, 46–51 (2000).
pubmed: 10679459
doi: 10.1016/S0959-440X(99)00047-0
pmcid: 10679459
McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).
pubmed: 17923092
doi: 10.1016/j.cell.2007.07.036
pmcid: 17923092
Zuehlke, A. D., Moses, M. A. & Neckers, L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. B. Biol. Sci. 373, 20160527 (2018).
doi: 10.1098/rstb.2016.0527
Tsan, M. F. & Gao, B. Cytokine function of heat shock proteins. AJP Cell. Physiol. 286, C739-744 (2004).
doi: 10.1152/ajpcell.00364.2003
Bohonowych, J. E. et al. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: Implications for the prostate tumor microenvironment. Prostate 74, 395–407 (2014).
pubmed: 24338924
doi: 10.1002/pros.22761
pmcid: 24338924
Chung, S. W. et al. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 378, 444–449 (2009).
pubmed: 19028451
doi: 10.1016/j.bbrc.2008.11.063
Beyer, C. & Distler, J. H. W. Tyrosine kinase signaling in fibrotic disorders. Biochim. Biophys. Acta. Mol. Basis. Dis. 1832, 897–904 (2013).
doi: 10.1016/j.bbadis.2012.06.008
Koga, F. et al. Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc. Natl. Acad. Sci. 103, 11318–11322 (2006).
pubmed: 16844778
doi: 10.1073/pnas.0604705103
pmcid: 16844778
Skhirtladze, C. et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthriti. Rheum. 58, 1475–1484 (2008).
doi: 10.1002/art.23436
Wrighton, K. H., Lin, X. & Feng, X. H. Critical regulation of TGFbeta signaling by Hsp90. Proc. Natl. Acad. Sci. USA 105, 9244–9249 (2008).
pubmed: 18591668
doi: 10.1073/pnas.0800163105
pmcid: 18591668
Tomcik, M. et al. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann. Rheum. Dis. 73, 1215–1222 (2014).
pubmed: 23661493
doi: 10.1136/annrheumdis-2012-203095
pmcid: 23661493
Gao, C. et al. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 25, 849–855 (2019).
pubmed: 31244417
doi: 10.2174/1381612825666190503145944
pmcid: 31244417
Norton, P. M., Isenberg, D. A. & Latchman, D. S. Elevated levels of the 90 kd heat shock protein in a proportion of SLE patients with active disease. J. Autoimmun. 2, 187–195 (1989).
pubmed: 2765096
doi: 10.1016/0896-8411(89)90154-6
pmcid: 2765096
Bubova, K. et al. Plasma Hsp90 levels in patients with spondyloarthritis and their relation to structural changes: A cross-sectional study. Biomark. Med. https://doi.org/10.2217/bmm-2020-0360 .
Storkanova, H. et al. Increased Hsp90 in muscle tissue and plasma associates with disease activity and skeletal muscle involvement in patients with idiopathic inflammatory myopathies. Ann. Rheum. Dis. 79(supplement 1), 410 (2020).
Ocaña, G. J. et al. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 151, 198–210 (2017).
pubmed: 28190264
pmcid: 5418464
doi: 10.1111/imm.12723
Tas, F., Bilgin, E., Erturk, K. & Duranyildiz, D. Clinical significance of circulating serum cellular heat shock protein 90 (HSP90) level in patients with cutaneous malignant melanoma. Asian. Pacific. J. Cancer Prev. 18, 599–601 (2017).
Fu, Y. et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: An official, large-scale, and multicenter clinical trial. E. Bio. Medicine 24, 56–63 (2017).
Shi, Y. et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin. Cancer. Res. 20, 6016–6022 (2014).
pubmed: 25316816
doi: 10.1158/1078-0432.CCR-14-0174
pmcid: 25316816
Muangchan, C. & Pope, J. E. The significance of interleukin-6 and C-reactive protein in systemic sclerosis: A systematic literature review. Clin. Exp. Rheumatol. 31, 122–134 (2013).
Sontake, V. et al. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2, e91454 (2017).
pubmed: 28239659
pmcid: 5313067
doi: 10.1172/jci.insight.91454
Koh, R. Y. et al. Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol. Med. Rep. 11, 3808–3813 (2015).
pubmed: 25585520
doi: 10.3892/mmr.2015.3193
pmcid: 25585520
O’Reilly, S., Cant, R., Ciechomska, M. & Van Laar, J. M. Interleukin-6: A new therapeutic target in systemic sclerosis?. Clin. Transl. Immunol. 2, e4 (2013).
doi: 10.1038/cti.2013.2
Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).
pubmed: 27156934
doi: 10.1016/S0140-6736(16)00232-4
pmcid: 27156934
Narváez, J. et al. Effectiveness and safety of tocilizumab for the treatment of refractory systemic sclerosis associated interstitial lung disease: A case series. Ann. Rheum. Dis. 78, e123 (2019).
pubmed: 30352892
doi: 10.1136/annrheumdis-2018-214449
pmcid: 30352892
O’Reilly, S., Ciechomska, M., Cant, R. & Van Laar, J. M. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via gremlin protein. J. Biol. Chem. 289, 9952–9960 (2014).
pubmed: 24550394
pmcid: 3975039
doi: 10.1074/jbc.M113.545822
Sato, N. et al. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem. Biophys. Res. Commun. 300, 847–852 (2003).
pubmed: 12559950
doi: 10.1016/S0006-291X(02)02941-8
pmcid: 12559950
Nannini, C., West, C. P., Erwin, P. J. & Matteson, E. L. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: A systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res. Ther. 10, R124 (2008).
pubmed: 18937831
pmcid: 2592814
doi: 10.1186/ar2534
Chakraborty, A., Boel, N.M.-E. & Edkins, A. L. HSP90 interacts with the fibronectin N-terminal domains and increases matrix formation. Cells 9, 272 (2020).
pmcid: 7072298
doi: 10.3390/cells9020272
Van Den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).
pubmed: 24122180
pmcid: 3930146
doi: 10.1002/art.38098
Silver, R. M., Miller, K. S., Kinsella, M. B., Smith, E. A. & Schabel, S. I. Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am. J. Med. 88, 470–476 (1990).
pubmed: 2337105
doi: 10.1016/0002-9343(90)90425-D
pmcid: 2337105
Bombardieri, S., Medsger, T. A. Jr., Silman, A. J. & Valentini, G. The assessment of the patient with systemic sclerosis. Introduction. Clin. Exp. Rheumatol. 21, S2–S4 (2003).
pubmed: 12889213
pmcid: 12889213
Clements, P. J. et al. Skin thickness score in systemic sclerosis: An assessment of interobserver variability in 3 independent studies. J. Rheumatol. 20, 1892–1896 (1993).
pubmed: 8308774
pmcid: 8308774
Valentini, G., Silman, A. J. & Veale, D. Assessment of disease activity. Clin. Exp. Rheumatol. 21, S39-41 (2003).
pubmed: 12889221
pmcid: 12889221
Crapo, O. et al. Standardization of spirometry, 1994 update. American Thoracic Society. Am. J. Respir. Crit. Care. Med. 152, 1107–1136 (1995).
doi: 10.1164/ajrccm.152.3.7663792