A meta-analysis of microRNA expression profiling studies in heart failure.


Journal

Heart failure reviews
ISSN: 1573-7322
Titre abrégé: Heart Fail Rev
Pays: United States
ID NLM: 9612481

Informations de publication

Date de publication:
07 2021
Historique:
accepted: 21 12 2020
pubmed: 15 1 2021
medline: 15 12 2021
entrez: 14 1 2021
Statut: ppublish

Résumé

Heart failure (HF) is a major consequence of many cardiovascular diseases with high rate of morbidity and mortality. Early diagnosis and prevention are hampered by the lack of informative biomarkers. The aim of this study was to perform a meta-analysis of the miRNA expression profiling studies in HF to identify novel candidate biomarkers or/and therapeutic targets. A comprehensive literature search of the PubMed for miRNA expression studies related to HF was carried out. The vote counting and robust rank aggregation meta-analysis methods were used to identify significant meta-signatures of HF-miRs. The targets of HF-miRs were identified, and network construction and gene set enrichment analysis (GSEA) were performed to identify the genes and cognitive pathways most affected by the dysregulation of the miRNAs. The literature search identified forty-five miRNA expression studies related to CHF. Shared meta-signature was identified for 3 up-regulated (miR-21, miR-214, and miR-27b) and 13 down-regulated (miR-133a, miR-29a, miR-29b, miR-451, miR-185, miR-133b, miR-30e, miR-30b, miR-1, miR-150, miR-486, miR-149, and miR-16-5p) miRNAs. Network properties showed miR-29a, miR-21, miR-29b, miR-1, miR-16, miR-133a, and miR-133b have the most degree centrality. GESA identified functionally related sets of genes in signaling and community pathways in HF that are the targets of HF-miRs. The miRNA expression meta-analysis identified sixteen highly significant HF-miRs that are differentially expressed in HF. Further validation in large patient cohorts is required to confirm the significance of these miRs as HF biomarkers and therapeutic targets.

Identifiants

pubmed: 33443726
doi: 10.1007/s10741-020-10071-9
pii: 10.1007/s10741-020-10071-9
doi:

Substances chimiques

Biomarkers 0
MicroRNAs 0

Types de publication

Journal Article Meta-Analysis Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

997-1021

Références

Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, Falk V, González-Juanatey J, Harjola V, Jankowska E (2016) Authors/Task Force Members; Document Reviewers (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975
Chopra VK, Mittal S, Bansal M, Singh B, Trehan N (2019) Clinical profile and one-year survival of patients with heart failure with reduced ejection fraction: the largest report from India. Indian Heart J 71(3):242–248
pubmed: 31543197 pmcid: 6796637
Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62
pmcid: 4961993
Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I, Watson C, O’Hanlon R, Bermingham M, Patle A (2013) Natriuretic peptide–based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310(1):66–74
pubmed: 23821090
Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303(9):H1085–H1095
pubmed: 22942181
Duggal B, Gupta KM, V Naga Prasad S (2016) Potential role of microRNAs in cardiovascular disease: are they up to their hype? Curr Cardiol Rev 12(4):304–310
pubmed: 26926293 pmcid: 5304257
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014
Boon R (2012) The role of microRNAs in cardiovascular aging. Vascul Pharmacol 5(56):330
Sanoudou D, Tousoulis D, Cokkinos DV (2015) The role of microRNAs in cardiovascular disease. In: Introduction to Translational Cardiovascular Research. Springer, pp 143–165
Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD et al (2007) Altered microRNA expression in human heart disease. Physiol Genomics. 31(3):367–73
pubmed: 17712037
Huang S, Chen M, Li L, He Ma HuD, Zhang X, Li J, Tanguay RM, Feng J, Cheng L (2014) Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ Cardiovasc Genet 7(2):189–198
pubmed: 24627568
Yan H, Ma F, Zhang Y, Wang C, Qiu D, Zhou K, Hua Y, Li Y (2017) miRNAs as biomarkers for diagnosis of heart failure: A systematic review and meta-analysis. Medicine 96(22)
Zhou S-S, Jin J-P, Wang J-Q, Zhang Z-G, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39(7):1073–1084
pubmed: 29877320 pmcid: 6289363
Yang K, Shen Q, Lei S, Lu T, Cai X, Guo L, Sun G, Lv G, Sun X, Chen S (2019) Identifying microRNA biomarkers and constructing microRNA-regulated networks in coronary artery diseases: a meta-analysis. Int J Clin Exp Med 12(3):2899-+
Wang S-S, Wu L-J, Xiao H-B, He Y, Yan Y-X (2018) A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sci 215:170–181
pubmed: 30423308
Kim JS, Pak K, Goh TS, Jeong DC, Han M-E, Kim J, Oh S-O, Kim CD, Kim YH (2018) Prognostic value of microRNAs in coronary artery diseases: a meta-analysis. Yonsei Med J 59(4):495–500
pubmed: 29749132 pmcid: 5949291
Rikke BA, Wynes MW, Rozeboom LM, Barón AE, Hirsch FR (2015) Independent validation test of the vote-counting strategy used to rank biomarkers from published studies. Biomarkers in medicine 9(8):751–761
pubmed: 26223535 pmcid: 4770796
Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051
pubmed: 17075124
Kolde R, Laur S, Adler P, Vilo J (2012) Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28(4):573–580
pubmed: 22247279 pmcid: 3278763
Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M (2018) Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers 23(8):713–724
pubmed: 29909697
Gholaminejad A, Tehrani HA, Fesharaki MG (2018) Identification of candidate microRNA biomarkers in diabetic nephropathy: a meta-analysis of profiling studies. J Nephrol 31(6):813–831
pubmed: 30019103
Song Z-y, Chao F, Zhuo Z, Ma Z, Li W, Chen G (2019) Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging (Albany NY) 11(13):4736
Cakmak HA, Coskunpinar E, Ikitimur B, Barman HA, Karadag B, Tiryakioglu NO, Kahraman K, Vural VA (2015) The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med 16(6):431–437
Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618
pubmed: 17468766
Chen F, Yang J, Li Y, Wang H (2018) Circulating microRNAs as novel biomarkers for heart failure. Hellenic J Cardiol 59(4):209–214
pubmed: 29126951
Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840
pubmed: 17525252 pmcid: 1899438
Derda AA, Pfanne A, Bär C, Schimmel K, Kennel PJ, Xiao K, Schulze PC, Bauersachs J, Thum T (2018) Blood-based microRNA profiling in patients with cardiac amyloidosis. PloS one 13 (10)
Fang L, Ellims AH, Moore X-l, White DA, Taylor AJ, Chin-Dusting J, Dart AM (2015) Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med 13(1):314
pubmed: 26404540 pmcid: 4581079
Feng H, Ouyang W, Liu J, Sun Y, Hu R, Huang L, Xian J, Jing C, Zhou M (2014) Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res 47(5):361–368
pubmed: 24728214 pmcid: 4075303
Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N (2011) Assessment of plasma miRNAs in congestive heart failure. Circ J 75(2):336–340
pubmed: 21157109
Ge Y, Pan S, Guan D, Yin H, Fan Y, Liu J, Zhang S, Zhang H, Feng L, Wang Y (2013) microRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1832(1):1–10
Gupta MK, Halley C, Duan Z-H, Lappe J, Viterna J, Jana S, Augoff K, Mohan ML, Vasudevan NT, Na J (2013) miRNA-548c: a specific signature in circulating PBMCs from dilated cardiomyopathy patients. J Mol Cell Cardiol 62:131–141
pubmed: 23735785 pmcid: 3735826
Ikitimur B, Cakmak HA, Coskunpinar E, Barman HA, Vural VA (2015) The relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiologia Polska (Polish Heart Journal) 73(9):740–746
Isserlin R, Merico D, Wang D, Vuckovic D, Bousette N, Gramolini AO, Bader GD, Emili A (2015) Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. Mol BioSyst 11(1):239–251
pubmed: 25361207
Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Stricker JC, Croston TL, Baseler WA, Lewis SE, Martinez I, Hollander JM (2015) Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart. Circ Cardiovasc Genet 8(6):785–802
pubmed: 26377859 pmcid: 4681669
Li H, Fan J, Yin Z, Wang F, Chen C, Wang DW (2016) Identification of cardiac-related circulating microRNA profile in human chronic heart failure. Oncotarget 7(1):33
pubmed: 26683101
Li X, Zhang X, Wang T, Sun C, Jin T, Yan H, Zhang J, Li X, Geng T, Chen C (2013) Regulation by bisoprolol for cardiac microRNA expression in a rat volume-overload heart failure model. J Nanosci Nanotechnol 13(8):5267–5275
pubmed: 23882753
Lok SI, de Jonge N, van Kuik J, van Geffen AJ, Huibers MM, van der Weide P, Siera E, Winkens B, Doevendans PA, de Weger RA (2015) microRNA expression in myocardial tissue and plasma of patients with end-stage heart failure during LVAD support: comparison of continuous and pulsatile devices. PloS one 10(10)
Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM (2016) The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 18(8):1000–1008
pubmed: 27072074
Muthusamy S, DeMartino AM, Watson LJ, Brittian KR, Zafir A, Dassanayaka S, Hong KU, Jones SP (2014) microRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. J Biol Chem 289(43):29665–29676
pubmed: 25183011 pmcid: 4207981
Prasad SVN, Duan Z-H, Gupta MK, Surampudi VSK, Volinia S, Calin GA, Liu C-G, Kotwal A, Moravec CS, Starling RC (2009) Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 284(40):27487–27499
Qiang L, Hong L, Ningfu W, Huaihong C, Jing W (2013) Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int J Cardiol 168(3):2082–2088
pubmed: 23465244
Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, Kormos R, Toyoda Y, Bermudez C, Frazier O (2011) A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol 58(22):2270–2278
pubmed: 22093502 pmcid: 3226759
Sayed D, Hong C, Chen I-Y, Lypowy J, Abdellatif M (2007) microRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424
pubmed: 17234972
Song L, Su M, Wang S, Zou Y, Wang X, Wang Y, Cui H, Zhao P, Hui R, Wang J (2014) miR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC 1. J Cell Mol Med 18(11):2266–2274
pubmed: 25209900 pmcid: 4224559
Stauffer BL, Russell G, Nunley K, Miyamoto SD, Sucharov CC (2013) miRNA expression in pediatric failing human heart. J Mol Cell Cardiol 57:43–46
pubmed: 23333438 pmcid: 3694420
Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106(6):1035
pubmed: 20185794
Varga ZV, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N, Zvara Á, Puskás LG, Rázga Z, Tiszlavicz L (2013) microRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 62:111–121
pubmed: 23722270
Wang H, Chen F, Tong J, Li Y, Cai J, Wang Y, Li P, Hao Y, Tian W, Lv Y (2017) Circulating microRNAs as novel biomarkers for dilated cardiomyopathy. Cardiol J 24(1):65–73
pubmed: 27748501
Wang J, Xu R, Lin F, Zhang S, Zhang G, Hu S, Zheng Z (2009) microRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 113(2):81–88
pubmed: 19018142
Wang K, Liu F, Zhou L-Y, Long B, Yuan S-M, Wang Y, Liu C-Y, Sun T, Zhang X-J, Li P-F (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114(9):1377–1388
pubmed: 24557880
Wang X, Wang H-X, Li Y-L, Zhang C-C, Zhou C-Y, Wang L, Xia Y-L, Du J, Li H-H (2015) microRNA Let-7i negatively regulates cardiac inflammation and fibrosis. Hypertension 66(4):776–785
pubmed: 26259595
Wijnen WJ, van der Made I, van den Oever S, Hiller M, de Boer BA, Picavet DI, Chatzispyrou IA, Houtkooper RH, Tijsen AJ, Hagoort J (2014) Cardiomyocyte-specific miRNA-30c over-expression causes dilated cardiomyopathy. PloS one 9(5)
Zhao Y, Li Y, Tong L, Liang X, Zhang H, Li L, Fan G, Wang Y (2018) Analysis of microRNA expression profiles induced by Yiqifumai injection in rats with chronic heart failure. Front Physiol 9:48
pubmed: 29467665 pmcid: 5808162
Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J (2013) Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy. J Cell Mol Med 17(9):1173–1187
pubmed: 23998897 pmcid: 4118176
Pofi R, Giannetta E, Galea N, Francone M, Campolo F, Barbagallo F, Gianfrilli D, Venneri MA, Filardi T, Cristini C (2020) Diabetic Cardiomiopathy Progression is Triggered by miR122–5p and Involves Extracellular Matrix: A 5-Year Prospective Study. JACC: Cardiovascular Imaging
Lin B, Feng DG, Xu J (2019) microRNA-665 silencing improves cardiac function in rats with heart failure through activation of the cAMP signaling pathway. J Cell Physiol 234(8):13169–13181
pubmed: 30666648
Zhou S, Lei D, Bu F, Han H, Zhao S, Wang Y (2019) microRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. J Cardiovasc Transl Res 12(4):358–365
pubmed: 30560317
Huang J, Jiang R, Chu X, Wang F, Sun X, Wang Y, Pang L (2020) Overexpression of microRNA‐23a‐5p induces myocardial infarction by promoting cardiomyocyte apoptosis through inhibited of PI3K/AKT signalling pathway. Cell Biochem Funct
Zhang B, Li B, Qin F, Bai F, Sun C, Liu Q (2019) Expression of serum microRNA-155 and its clinical importance in patients with heart failure after myocardial infarction. J Int Med Res 47(12):6294–6302
pubmed: 31709859 pmcid: 7045684
Su Q, Zhang P, Yu D, Wu Z, Li D, Shen F, Liao P, Yin G (2019) Upregulation of miR-93 and inhibition of LIMK1 improve ventricular remodeling and alleviate cardiac dysfunction in rats with chronic heart failure by inhibiting RhoA/ROCK signaling pathway activation. Aging (Albany NY) 11(18):7570
Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, Zhang Y, Qi H, Yu H, Aung LHH (2020) Combined detection of miR-21–5p, miR-30a-3p, miR-30a-5p, miR-155–5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 40(3)
Sun B, Meng M, Wei J, Wang S (2020) Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Exp Ther Med 19(5):3348–3354
pubmed: 32266032 pmcid: 7132232
Liu ZY, Lu M, Liu J, Wang ZN, Wang WW, Li Y, Song ZJ, Xu L, Liu Q, Li FH (2020) microRNA-144 regulates angiotensin II-induced cardiac fibroblast activation by targeting CREB. Exp Ther Med 20(3):2113–2121
pubmed: 32765685 pmcid: 7401692
Aleshcheva G, Pietsch H, Escher F, Schultheiss HP (2020) microRNA profiling as a novel diagnostic tool for identification of patients with inflammatory and/or virally induced cardiomyopathies. ESC Heart Failure
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D (2020) Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med
Wong LL, Zou R, Zhou L, Lim JY, Phua DC, Liu C, Chong JP, Ng JY, Liew OW, Chan SP (2019) Combining circulating microRNA and NT-proBNP to detect and categorize heart failure subtypes. J Am Coll Cardiol 73(11):1300–1313
pubmed: 30898206
Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341(17):1276–1283
pubmed: 10528039
Zhang Y, Kanter EM, Yamada KA (2010) Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc Pathol 19(6):e233–e240
pubmed: 20093048 pmcid: 2891425
Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen J-F, Newman M, Rojas M, Hammond SM, Wang D-Z (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42(6):1137–1141
pubmed: 17498736 pmcid: 1934409
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S (2008) microRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984
pubmed: 19043405
Liang H, Zhang C, Ban T, Liu Y, Mei L, Piao X, Zhao D, Lu Y, Chu W, Yang B (2012) A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol 44(12):2152–2160
pubmed: 22960625
Yang Q, Yang K, Li A (2014) microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep 9(6):2213–2220
pubmed: 24676391
Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A (2014) Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124(5):2136–2146
pubmed: 24743145
Mendell JT, Olson EN (2012) microRNAs in stress signaling and human disease. Cell 148(6):1172–1187
pubmed: 22424228 pmcid: 3308137
Deng F, Xu X, Chen Y-H (2014) The role of miR-1 in the heart: From cardiac morphogenesis to physiological function. Hum Genet Embryol 4 (119):2161–0436.1000119
Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45(2):185–192
pubmed: 18582896 pmcid: 2561965
Dong D-L, Chen C, Huo R, Wang N, Li Z, Tu Y-J, Hu J-T, Chu X, Huang W, Yang B-F (2010) Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55(4):946–952
pubmed: 20177001
Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G (2009) microRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 50(3):377–387
pubmed: 19506341
Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491
pubmed: 17401374
Luo X, Lin H, Du Z, Xiao J, Lu Y, Yang B, Wang Z (2007) Downregulation of microRNA-1/microRNA-133 and overexpression of Sp1 activates re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. Am Heart Assoc
Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5(6):559–566. https://doi.org/10.1038/ncb995
doi: 10.1038/ncb995 pubmed: 12766775
Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee K-H, Ma Q, Kang PM, Golub TR (2009) microRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29(8):2193–2204
pubmed: 19188439 pmcid: 2663304
Tang R, Long T, Lui KO, Chen Y, Huang Z-P (2020) A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol Ther Nucleic Acids
Li Q, Song X-W, Zou J, Wang G-K, Kremneva E, Li X-Q, Zhu N, Sun T, Lappalainen P, Yuan W-J (2010) Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 123(14):2444–2452
pubmed: 20571053
Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2(2):e000078
pubmed: 23612897 pmcid: 3647279
Nelson TJ, Balza R Jr, Xiao Q, Misra RP (2005) SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. J Mol Cell Cardiol 39(3):479–489
pubmed: 15950986
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254
pubmed: 19015276 pmcid: 2600761
Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, VanBuren V, Dostal DE, Zhang SL, Peng X (2017) Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 421(2):271–283
pubmed: 27986432
Qian L, Wythe JD, Liu J, Cartry J, Vogler G, Mohapatra B, Otway RT, Huang Y, King IN, Maillet M (2011) Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. J Cell Biol 193(7):1181–1196
pubmed: 21690310 pmcid: 3216339
Hua Y, Zhang Y, Ren J (2012) IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J Cell Mol Med 16(1):83–95
pubmed: 21418519
Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Guo S, Wang Y, Fan K, Zhan D (2012) Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res 22(3):516–527
pubmed: 21844895
Kim JO, Song DW, Kwon EJ, Hong S-E, Song HK, Min CK, Kim DH (2015) miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One 10(3)
Kim JO, Kwon EJ, Song DW, Lee JS, Kim DH (2016) miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart. BMB reports 49(4):208
pubmed: 26521941 pmcid: 4915239
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2):170–178
pubmed: 19096030
Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci 105(35):13027–13032
pubmed: 18723672
Zhang Y, Huang X-R, Wei L-H, Chung AC, Yu C-M, Lan H-Y (2014) miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 22(5):974–985
pubmed: 24569834 pmcid: 4015231
Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, Sur S, Drozdov I, Langley SR, Lu R (2013) Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 113(10):1138–1147
pubmed: 24006456
Zhu J-N, Chen R, Fu Y-H, Lin Q-X, Huang S, Guo L-L, Zhang M-Z, Deng C-Y, Zou X, Zhong S-L (2013) Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat. PloS one 8(9)
Li M, Wang N, Zhang J, He H-P, Gong H-Q, Zhang R, Song T-F, Zhang L-N, Guo Z-X, Cao D-S (2016) microRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene 585(1):44–50
pubmed: 26992639
Chen Y, Song Y-X, Wang Z-N (2013) The microRNA-148/152 family: multi-faceted players. Mol Cancer 12(1):43
pubmed: 23683438 pmcid: 3671164
Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81
pubmed: 22052914
Tang Y, Wang Y, Park Km HQ, Teoh Jp BZ, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G (2015) Kim Im. microRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106:387–397
pubmed: 25824147 pmcid: 4447807
Wang H, Cai J (2017) The role of microRNAs in heart failure. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1863 (8):2019–2030
Abu-Halima M, Meese E, Saleh MA, Keller A, Abdul-Khaliq H, Raedle-Hurst T (2019) Micro-RNA 150–5p predicts overt heart failure in patients with univentricular hearts. PloS one 14(10)
Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, Yao Y, Sun Y, Huang X, Ren L (2016) microRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem 38(6):2103–2122
pubmed: 27184887
Xu C, Hu Y, Hou L, Ju J, Li X, Du N, Guan X, Liu Z, Zhang T, Qin W (2014) β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J Mol Cell Cardiol 75:111–121
pubmed: 25066695
Wang J, Liew OW, Richards AM, Chen Y-T (2016) Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci 17(5):749
pmcid: 4881570
Kaneko M, Satomi T, Fujiwara S, Uchiyama H, Kusumoto K, Nishimoto T (2017) AT1 receptor blocker azilsartan medoxomil normalizes plasma miR-146a and miR-342-3p in a murine heart failure model. Biomarkers 22(3–4):253–260
pubmed: 27321284
Tang Y, Wang Y, Park K-m, Hu Q, Teoh J-p, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H (2015) microRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106(3):387–397
pubmed: 25824147 pmcid: 4447807
Wang X-t, Wu X-d, Lu Y-x, Sun Y-h, Zhu H-h, Liang J-b, He W-k, Zeng Z-y, Li L (2017) Potential involvement of MiR-30e-3p in myocardial injury induced by coronary microembolization via autophagy activation. Cell Physiol Biochem 44(5):1995–2004
pubmed: 29237156
Lai L, Chen J, Wang N, Zhu G, Duan X, Ling F (2017) miRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci 169:69–75
pubmed: 27633839
Wei C, Li L, Gupta S (2014) NF-κB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem 387(1–2):135–141
pubmed: 24178239
Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P, Huang W (2017) micro RNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 21(3):467–474
pubmed: 27680680
Huang W, Tian S-S, Hang P-Z, Sun C, Guo J, Du Z-M (2016) Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther Nucleic Acids 5:e296
pubmed: 26978580 pmcid: 5014454
Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) microRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47(1):5–14
pubmed: 19336275 pmcid: 3593965
Dong S, Ma W, Hao B, Hu F, Yan L, Yan X, Wang Y, Chen Z, Wang Z (2014) microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol 7(2):565
pubmed: 24551276 pmcid: 3925900
Jennewein C, von Knethen A, Schmid T, Brüne B (2010) microRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization. J Biol Chem 285(16):11846–11853
pubmed: 20164187 pmcid: 2852921
Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacanamwo M, Chen YE, Schneider MD, Mangelsdorf DJ (2007) Cardiac peroxisome proliferator-activated receptor δ is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res 76(2):269–279
pubmed: 17678635
Duan Q, Yang L, Gong W, Chaugai S, Wang F, Chen C, Wang P, Zou MH, Wang DW (2015) MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 230(8):1964–1973
pubmed: 25656649 pmcid: 4911176
Zeng L, Xiao Q, Chen M, Margariti A, Martin D, Ivetic A, Xu H, Mason J, Wang W, Cockerill G (2013) Vascular endothelial cell growth–activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 127(16):1712–1722
pubmed: 23529610
Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412(6847):647–651
pubmed: 11493923
Di Bari MG, Lutsiak MC, Takai S, Mostböck S, Farsaci B, Semnani RT, Wakefield LM, Schlom J, Sabzevari H (2009) TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression. Cancer Immunol Immunother 58(11):1809–1818
pubmed: 19319531 pmcid: 3499107
Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C, Suárez Y (2011) microRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 31(11):2595–2606
pubmed: 21885851 pmcid: 3226744
Adhikari N, Guan W, Capaldo B, Mackey AJ, Carlson M, Ramakrishnan S, Walek D, Gupta M, Mitchell A, Eckman P (2014) Identification of a new target of miR-16, Vacuolar Protein Sorting 4a. PloS one 9(7)
Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan G-C (2012) Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 94(2):379–390
pubmed: 22354898 pmcid: 3331614
Lin J, Jiang J, Zhou R, Li X, Ye J (2019) microRNA-451b participates in coronary heart disease by targeting VEGFA. Open Med 15(1):1–7
Lai CT, Ng EK, Chow P-c, Kwong A, Cheung Y-f (2013) Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arteries. BMC Cardiovascular Disorders 13(1):73
pubmed: 24040857 pmcid: 3847493
Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC genomics 8(1):166
pubmed: 17565689 pmcid: 1904203
Cho W (2011) Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Frontiers in genetics 2:7
pubmed: 22303306 pmcid: 3268566
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997
pubmed: 18766170
Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051
pubmed: 17075124
Chan SK, Griffith OL, Tai IT, Jones SJ (2008) Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomarkers Prev 17(3):543–552
pubmed: 18349271
Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132(12):2884–2893
pubmed: 23225545
Licursi V, Conte F, Fiscon G, Paci P (2019) MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20(1):1–10

Auteurs

Alieh Gholaminejad (A)

Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

Nasrin Zare (N)

Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran.

Nasim Dana (N)

Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran.

Davood Shafie (D)

Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.

Arya Mani (A)

Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.

Shaghayegh Haghjooy Javanmard (SH)

Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran. shaghayegh.haghjoo@gmail.com.
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. shaghayegh.haghjoo@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH