Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from

chlamydomonas reinhardtii fluorescence spectroscopy molecular biophysics non-photochemical quenching photosynthetic light harvesting plant biology structural biology

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
15 01 2021
Historique:
received: 24 06 2020
accepted: 14 01 2021
pubmed: 16 1 2021
medline: 4 2 2022
entrez: 15 1 2021
Statut: epublish

Résumé

Under high light, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating absorbed energy, which is called nonphotochemical quenching. In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via a pH drop and serves as a quenching site. Using a combined in vivo and in vitro approach, we investigated quenching within LHCSR3 from Green plants and algae rely on sunlight to transform light energy into chemical energy in a process known as photosynthesis. However, too much light can damage plants. Green plants prevent this by converting the extra absorbed light into heat. Both the absorption and the dissipation of sunlight into heat occur within so called light harvesting complexes. These are protein structures that contain pigments such as chlorophyll and carotenoids. The process of photoprotection starts when the excess of absorbed light generates protons (elementary particles with a positive charge) faster than they can be used. This causes a change in the pH (a measure of the concentration of protons in a solution), which in turn, modifies the shape of proteins and the chemical identity of the carotenoids. However, it is still unclear what the exact mechanisms are. To clarify this, Troiano, Perozeni et al. engineered the light harvesting complex LHCSR3 of the green algae

Autres résumés

Type: plain-language-summary (eng)
Green plants and algae rely on sunlight to transform light energy into chemical energy in a process known as photosynthesis. However, too much light can damage plants. Green plants prevent this by converting the extra absorbed light into heat. Both the absorption and the dissipation of sunlight into heat occur within so called light harvesting complexes. These are protein structures that contain pigments such as chlorophyll and carotenoids. The process of photoprotection starts when the excess of absorbed light generates protons (elementary particles with a positive charge) faster than they can be used. This causes a change in the pH (a measure of the concentration of protons in a solution), which in turn, modifies the shape of proteins and the chemical identity of the carotenoids. However, it is still unclear what the exact mechanisms are. To clarify this, Troiano, Perozeni et al. engineered the light harvesting complex LHCSR3 of the green algae

Identifiants

pubmed: 33448262
doi: 10.7554/eLife.60383
pii: 60383
pmc: PMC7864637
doi:
pii:

Substances chimiques

Algal Proteins 0
Zeaxanthins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2021, Troiano et al.

Déclaration de conflit d'intérêts

JT, FP, RM, LZ, KB, EJ, SC, MB, GS No competing interests declared

Références

Science. 2010 Aug 13;329(5993):796-9
pubmed: 20705853
Nat Commun. 2017 Dec 8;8(1):1994
pubmed: 29222488
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3385-3390
pubmed: 30808735
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11247-11252
pubmed: 31101718
Annu Rev Plant Biol. 2010;61:235-61
pubmed: 20192734
Anal Biochem. 1987 Nov 1;166(2):368-79
pubmed: 2449095
J Phys Chem B. 2005 Jan 13;109(1):617-28
pubmed: 16851054
Sci Rep. 2015 Sep 01;5:13679
pubmed: 26323786
Biophys J. 2008 Mar 1;94(5):1826-35
pubmed: 17921203
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8320-8325
pubmed: 30962362
J Exp Bot. 2006;57(8):1725-34
pubmed: 16595576
Nat Plants. 2016 Sep 12;2:16140
pubmed: 27618685
Nature. 2009 Nov 26;462(7272):518-21
pubmed: 19940928
Sci Rep. 2016 Jul 28;6:30620
pubmed: 27466170
J Am Chem Soc. 2013 Dec 11;135(49):18339-42
pubmed: 24261574
Plant Physiol. 2020 Jan;182(1):597-611
pubmed: 31662419
J Phys Chem B. 2013 Oct 3;117(39):11414-22
pubmed: 23977832
J Phys Chem B. 2010 Oct 28;114(42):13517-35
pubmed: 20886872
Biochim Biophys Acta Bioenerg. 2020 Jun 1;1861(5-6):148115
pubmed: 32204904
Science. 2008 May 9;320(5877):794-7
pubmed: 18467588
J Phys Chem Lett. 2019 May 16;10(10):2500-2505
pubmed: 31042040
J Exp Bot. 2017 Jan 1;68(3):627-641
pubmed: 28007953
Sci Rep. 2015 Oct 23;5:15661
pubmed: 26493782
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):10016-21
pubmed: 23716695
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12728-33
pubmed: 20616026
J Phys Chem Lett. 2015 Mar 5;6(5):860-7
pubmed: 26262664
Nat Commun. 2020 Mar 10;11(1):1295
pubmed: 32157079
J Biol Chem. 2020 Dec 18;295(51):17816-17826
pubmed: 33454016
J Anim Sci Biotechnol. 2013 Dec 21;4(1):53
pubmed: 24359607
J Biol Chem. 2012 Sep 7;287(37):31574-81
pubmed: 22801422
Biochim Biophys Acta Bioenerg. 2020 Mar 1;1861(3):148156
pubmed: 31987813
Int J Mol Sci. 2018 Jan 05;19(1):
pubmed: 29303960
Plant Cell Environ. 2017 Aug;40(8):1243-1255
pubmed: 28699261
Plant Cell Physiol. 2014 Jul;55(7):1304-10
pubmed: 24850838
Plant Cell Environ. 2020 Feb;43(2):496-509
pubmed: 31724187
Biochemistry. 2002 Jul 23;41(29):9139-44
pubmed: 12119029
Plant Cell. 1997 Aug;9(8):1369-1380
pubmed: 12237386
Biochim Biophys Acta. 2012 Jan;1817(1):182-93
pubmed: 21565154
Phys Chem Chem Phys. 2011 Oct 14;13(38):17093-103
pubmed: 21866281
Biophys J. 2010 Jun 16;98(12):3093-101
pubmed: 20550923
Science. 2016 Nov 18;354(6314):857-861
pubmed: 27856901
Plant Cell. 2013 Sep;25(9):3519-34
pubmed: 24014548
J Biol Chem. 2010 Sep 3;285(36):28309-21
pubmed: 20584907
R Soc Open Sci. 2016 Oct 26;3(10):160592
pubmed: 27853580
Nat Plants. 2017 Jan 30;3:16225
pubmed: 28134919
J Biol Chem. 2016 Apr 1;291(14):7334-46
pubmed: 26817847
J Phys Chem B. 2009 Oct 1;113(39):13071-8
pubmed: 19725570
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4212-4217
pubmed: 30782831
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4377-82
pubmed: 12676997
Plant Cell Environ. 2019 Aug;42(8):2522-2535
pubmed: 30997927
Nature. 2007 Nov 22;450(7169):575-8
pubmed: 18033302
J Phys Chem B. 2013 Nov 14;117(45):13985-92
pubmed: 24111566
J Phys Chem B. 2013 Oct 3;117(39):11423-32
pubmed: 23977902
Photosynth Res. 2010 Nov;106(1-2):179-89
pubmed: 20632109
J Am Chem Soc. 2016 Sep 14;138(36):11616-22
pubmed: 27546794
Appl Environ Microbiol. 2000 Jan;66(1):64-72
pubmed: 10618204
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7673-8
pubmed: 27335457
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13516-21
pubmed: 21808044
Biochim Biophys Acta. 2016 Sep;1857(9):1514-1523
pubmed: 27150505
Elife. 2021 Jan 15;10:
pubmed: 33448262
Sci Rep. 2017 Sep 11;7(1):11158
pubmed: 28894198
J Phys Chem B. 2010 Dec 2;114(47):15650-5
pubmed: 21062089
J Phys Chem B. 2009 Nov 19;113(46):15352-63
pubmed: 19856954
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:655-684
pubmed: 15012304
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359
pubmed: 15012213
Nat Chem. 2017 Aug;9(8):772-778
pubmed: 28754946
New Phytol. 2020 Oct;228(1):136-150
pubmed: 32442330
PLoS Biol. 2011 Jan 18;9(1):e1000577
pubmed: 21267060
ACS Nano. 2012 Jul 24;6(7):6364-9
pubmed: 22703450
Nat Plants. 2019 Nov;5(11):1177-1183
pubmed: 31659240
Annu Rev Plant Biol. 2014;65:287-309
pubmed: 24471838

Auteurs

Julianne M Troiano (JM)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States.

Federico Perozeni (F)

Department of Biotechnology, University of Verona, Verona, Italy.

Raymundo Moya (R)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States.

Luca Zuliani (L)

Department of Biotechnology, University of Verona, Verona, Italy.

Kwangyrul Baek (K)

Department of Life Science, Hanyang University, Seoul, Republic of Korea.

EonSeon Jin (E)

Department of Life Science, Hanyang University, Seoul, Republic of Korea.

Stefano Cazzaniga (S)

Department of Biotechnology, University of Verona, Verona, Italy.

Matteo Ballottari (M)

Department of Biotechnology, University of Verona, Verona, Italy.

Gabriela S Schlau-Cohen (GS)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH