Metabolomic analysis of plasma from normal-weight adults with hypo-HDL cholesterolemia by UPLC-QTOF MS.
UPLC-QTOF MS
hypo-HDL cholesterolemia
metabolic pathway
metabolomics
Journal
Biomedical chromatography : BMC
ISSN: 1099-0801
Titre abrégé: Biomed Chromatogr
Pays: England
ID NLM: 8610241
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
revised:
05
01
2021
received:
29
08
2020
accepted:
11
01
2021
pubmed:
17
1
2021
medline:
22
5
2021
entrez:
16
1
2021
Statut:
ppublish
Résumé
High-density lipoprotein cholesterol (HDL-C) is negatively correlated with atherosclerotic cardiovascular disease. The prevalence of hypo-HDL cholesterolemia is as high as 33.9%. The plasma metabolomic differences between hypo-HDL cholesterolemia populations and normal controls were investigated using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Participants with hypo-HDL cholesterolemia and normal controls were clearly discriminated from each other on the orthogonal partial least squares-discriminant analysis score plot and a total of 90 differential metabolites were identified, including down-regulated phosphatidylserine [18:0/20:3(8Z,11Z,14Z)], phosphatidylcholine [19:0/18:3(6Z,9Z,12Z)], phosphatidylserine, phosphatidylethanolamine [18:0/20:4(5Z,8Z,11Z,13E) (15Ke)], etc., and up-regulated triglyceride [15:0/18:1(9Z)/18:3(9Z,12Z,15Z)][iso6], 13-methyl-1-tritriacontene, tridodecylamine, etc. Most of the changed metabolites were lipids, notably, a significant part of which were odd chain fatty acid incorporated lipids. Carnitine shuttle was the most significant metabolic pathway, except for the disturbed glycerophospholipid metabolism, glycosphingolipid metabolism and sphingolipid metabolism in participants with hypo-HDL cholesterolemia. We identified the key metabolites and metabolic pathways that may be changed in hypo-HDL cholesterolemia participants, providing useful clues for studying the metabolic mechanisms and for early prevention of hypo-HDL cholesterolemia and dyslipidemia.
Substances chimiques
Cholesterol, HDL
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e5073Subventions
Organisme : National Natural Science Foundation of China
ID : NSFC, No. 21605132
Informations de copyright
© 2021 John Wiley & Sons, Ltd.
Références
Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., … Ziaeian, B. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Executive summary: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Journal of the American College of Cardiology, 74, 1376-1414. https://doi.org/10.1016/j.jacc.2019.03.009
Cahill, L. E., Sacks, F. M., Rimm, E. B., & Jensen, M. K. (2019). Cholesterol efflux capacity, HDL cholesterol, and risk of coronary heart disease: A nested case-control study in men. Journal of Lipid Research, 60, 1457-1464. https://doi.org/10.1194/jlr.P093823
Calabrese, V., Giuffrida Stella, A. M., Calvani, M., & Butterfield, D. A. (2006). Acetylcarnitine and cellular stress response: Roles in nutritional redox homeostasis and regulation of longevity genes. The Journal of Nutritional Biochemistry, 17, 73-88. https://doi.org/10.1016/j.jnutbio.2005.03.027
Chen, J., Ye, C., Hu, X., Huang, C., Yang, Z., Li, P., … Yang, H. (2019). Serum metabolomics model and its metabolic characteristics in patients with different syndromes of dyslipidemia based on nuclear magnetic resonance. Journal of Pharmaceutical and Biomedical Analysis, 167, 100-113. https://doi.org/10.1016/j.jpba.2018.12.042
Cho, S. M. J., Lee, H. J., Shim, J. S., Song, B. M., & Kim, H. C. (2020). Associations between age and dyslipidemia are differed by education level: The Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort. Lipids in Health and Disease, 19, 12. https://doi.org/10.1186/s12944-020-1189-y
Cuchel, M., Rohatgi, A., Sacks, F. M., & Guyton, J. R. (2018). JCL Roundtable: High-density lipoprotein function and reverse cholesterol transport. Journal of Clinical Lipidology, 12, 1086-1094. https://doi.org/10.1016/j.jacl.2018.09.005
du Plessis, M., Franken, J., & Bauer, F. F. (2018). Carnitine requires choline to exert physiological effects in Saccharomyces cerevisiae. Frontiers in Microbiology, 9, 1362. https://doi.org/10.3389/fmicb.2018.01362
El-Gharbawy, A., & Vockley, J. (2018). Inborn errors of metabolism with myopathy: Defects of fatty acid oxidation and the carnitine shuttle system. Pediatric Clinics of North America, 65, 317-335. https://doi.org/10.1016/j.pcl.2017.11.006
Feng, R. N., Sun, G. Z., Zhang, Y. B., Sun, Q., Ju, L., Sun, C., & Wang, C. (2019). Short-term high-fat diet exacerbates insulin resistance and glycolipid metabolism disorders in young obese men with hyperlipemia by metabolomics analysis using UPLCQ-TOF MS. Journal of Diabetes, 11(2), 148-160. https://doi.org/10.1111/1753-0407.12828
Gordon, S. M., Chung, J. H., Playford, M. P., Dey, A. K., Sviridov, D., Seifuddin, F., … Remaley, A. T. (2018). High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography. Atherosclerosis, 278, 278-285. https://doi.org/10.1016/j.atherosclerosis.2018.09.032
Hu, X., Li, S., Cirillo, P. M., Krigbaum, N. Y., Tran, V., Jones, D. P., & Cohn, B. A. (2019). Metabolome wide association study of serum poly and perfluoroalkyl substances (PFASs) in pregnancy and early postpartum. Reproductive Toxicology, 87, 70-78. https://doi.org/10.1016/j.reprotox.2019.05.058
Jenkins, B., West, J. A., & Koulman, A. (2015). A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (c15:0) and heptadecanoic acid (c17:0) in health and disease. Molecules, 20, 2425-2444. https://doi.org/10.3390/molecules20022425
Joint Committee for Guidelines, R. (2018). 2016 Chinese guidelines for the management of dyslipidemia in adults. Journal of Geriatric Cardiology, 15, 1-29.
Ke, C., Zhu, X., Zhang, Y., & Shen, Y. (2018). Metabolomic characterization of hypertension and dyslipidemia. Metabolomics, 14, 117. https://doi.org/10.1007/s11306-018-1408-y
Khaw, K. T., Friesen, M. D., Riboli, E., Luben, R., & Wareham, N. (2012). Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Medicine, 9, e1001255. https://doi.org/10.1371/journal.pmed.1001255
Knottnerus, S. J. G., Bleeker, J. C., Wust, R. C. I., Ferdinandusse, S., Ijlst, L., Wijburg, F. A., … Houtkooper, R. H. (2018). Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Reviews in Endocrine & Metabolic Disorders, 19, 93-106. https://doi.org/10.1007/s11154-018-9448-1
Kostara, C. E., Tsimihodimos, V., Elisaf, M. S., & Bairaktari, E. T. (2017). NMR-based lipid profiling of high density lipoprotein particles in healthy subjects with low, Normal, and elevated HDL-cholesterol. Journal of Proteome Research, 16, 1605-1616. https://doi.org/10.1021/acs.jproteome.6b00975
Kurotani, K., Karunapema, P., Jayaratne, K., Sato, M., Hayashi, T., Kajio, H., … Mizoue, T. (2018). Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan. Nutrition Research, 50, 82-93. https://doi.org/10.1016/j.nutres.2017.12.004
Lee, H., Choi, J. M., Cho, J. Y., Kim, T. E., Lee, H. J., & Jung, B. H. (2018). Regulation of endogenic metabolites by rosuvastatin in hyperlipidemia patients: An integration of metabolomics and lipidomics. Chemistry and Physics of Lipids, 214, 69-83. https://doi.org/10.1016/j.chemphyslip.2018.05.005
Li, G., Gao, W., Xu, Y., Xie, M., Tang, S., Yin, P., … Cui, S. (2019). Serum metabonomics study of pregnant women with gestational diabetes mellitus based on LC-MS. Saudi J Biol Sci, 26, 2057-2063. https://doi.org/10.1016/j.sjbs.2019.09.016
Ma, N., Karam, I., Liu, X. W., Kong, X. J., Qin, Z., Li, S. H., … Li, J. Y. (2017). UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats. Toxicology and Applied Pharmacology, 332, 40-51. https://doi.org/10.1016/j.taap.2017.07.013
Ma, N., Liu, X., Kong, X., Li, S., Jiao, Z., Qin, Z., … Li, J. (2017). Feces and liver tissue metabonomics studies on the regulatory effect of aspirin eugenol ester in hyperlipidemic rats. Lipids in Health and Disease, 16, 240. https://doi.org/10.1186/s12944-017-0633-0
Ma, N., Liu, X. W., Kong, X. J., Li, S. H., Jiao, Z. H., Qin, Z., … Li, J. Y. (2018). Aspirin eugenol ester regulates cecal contents metabolomic profile and microbiota in an animal model of hyperlipidemia. BMC Veterinary Research, 14, 405. https://doi.org/10.1186/s12917-018-1711-x
Ossoli, A., Pavanello, C., Giorgio, E., Calabresi, L., & Gomaraschi, M. (2019). Dysfunctional HDL as a therapeutic target for atherosclerosis prevention. Current Medicinal Chemistry, 26, 1610-1630. https://doi.org/10.2174/0929867325666180316115726
Robinson, O., Keski-Rahkonen, P., Chatzi, L., Kogevinas, M., Nawrot, T., Pizzi, C., … Chadeau-Hyam, M. (2018). Cord blood metabolic signatures of birth weight: A population-based study. Journal of Proteome Research, 17, 1235-1247. https://doi.org/10.1021/acs.jproteome.7b00846
Sacks, F. M., & Jensen, M. K. (2018). From high-density lipoprotein cholesterol to measurements of function. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 487-499. https://doi.org/10.1161/ATVBAHA.117.307025
Seah, J. Y. H., Ong, C. N., Koh, W. P., Yuan, J. M., & van Dam, R. M. (2019). A dietary pattern derived from reduced rank regression and fatty acid biomarkers is associated with lower risk of type 2 diabetes and coronary artery disease in Chinese adults. The Journal of Nutrition, 149, 2001-2010. https://doi.org/10.1093/jn/nxz164
Shao, Q., Cheng, J., Li, Y., & Ni, G. (2020). Liquid chromatography-mass spectrometry-based plasma metabolomics study of the effects of Moxibustion with seed-sized Moxa cone on hyperlipidemia. Evidence-Based Complementary and Alternative Medicine, 2020. 1231357
Sowell, J., Fuqua, M., & Wood, T. (2011). Quantification of Total and free carnitine in human plasma by hydrophilic interaction liquid chromatography tandem mass spectrometry. Journal of Chromatographic Science, 49(6), 463-468.
Speijer, D. (2014). How the mitochondrion was shaped by radical differences in substrates: What carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS. BioEssays, 36, 634-643. https://doi.org/10.1002/bies.201400033
Sun, X., Lan, J., Tong, R., Zhang, H., Sun, S., Xiong, A., … Yang, L. (2019). An integrative investigation on the efficacy of Plantaginis Semen based on UPLC-QTOF-MS metabolomics approach in hyperlipidemic mice. Biomedicine & Pharmacotherapy, 115, 108907. https://doi.org/10.1016/j.biopha.2019.108907
Wakabayashi, I., & Daimon, T. (2017). Associations between hypo-HDL cholesterolemia and cardiometabolic risk factors in middle-aged men and women: Independence of habitual alcohol drinking, smoking and regular exercise. Obesity Research & Clinical Practice, 11, 324-334. https://doi.org/10.1016/j.orcp.2016.04.007
Wang, Y., Liu, D., Li, Y., Guo, L., Cui, Y., Zhang, X., & Li, E. (2016). Metabolomic analysis of serum from obese adults with hyperlipemia by UHPLC-Q-TOF MS/MS. Biomedical Chromatography, 30, 48-54. https://doi.org/10.1002/bmc.3491
Yang, B., Xuan, S., Ruan, Q., Jiang, S., Cui, H., Zhu, L., … Zhao, Z. (2020). UPLC/Q-TOF-MS/MS-based metabolomics revealed the lipid-lowering effect of Ilicis Rotundae cortex on high-fat diet induced hyperlipidemia rats. Journal of Ethnopharmacology, 256, 112784. https://doi.org/10.1016/j.jep.2020.112784
Zhang, Y., Wang, Z., Jin, G., Yang, X., & Zhou, H. (2017). Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats. International Journal of Biological Macromolecules, 101, 107-116. https://doi.org/10.1016/j.ijbiomac.2017.03.084