Prenatal dexamethasone exposure induces nonalcoholic fatty liver disease in male rat offspring via the miR-122/YY1/ACE2-MAS1 pathway.


Journal

Biochemical pharmacology
ISSN: 1873-2968
Titre abrégé: Biochem Pharmacol
Pays: England
ID NLM: 0101032

Informations de publication

Date de publication:
03 2021
Historique:
received: 28 10 2020
revised: 30 12 2020
accepted: 11 01 2021
pubmed: 19 1 2021
medline: 2 7 2021
entrez: 18 1 2021
Statut: ppublish

Résumé

Epidemiological studies have shown that nonalcoholic fatty liver disease (NAFLD) has an intrauterine developmental origin. We aimed to demonstrate that NAFLD is caused by prenatal dexamethasone exposure (PDE) in adult male rat offspring and to investigate the intrauterine programming mechanism. Liver samples were obtained on gestational day (GD) 21 and postnatal week (PW) 28. The effects and epigenetic mechanism of dexamethasone were studied with bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and other cell models. In the PDE group, lipid accumulation increased, triglyceride synthesis-related gene expression increased, and oxidation-related gene expression decreased in livers of adult male rat offspring. In utero, hepatic triglyceride synthesis increased and oxidative function decreased in PDE fetal male rats. Moreover, low hepatic miR-122 expression, high Yin Yang-1 (YY1) expression and angiotensin-converting enzyme 2 (ACE2)-Mas receptor (MAS1) signaling pathway inhibition were observed before and after birth. At the cellular level, dexamethasone (100-2500 nM) elevated the intracellular triglyceride content, increased triglyceride synthesis-related gene expression and decreased oxidation-related gene expression. Dexamethasone treatment also decreased miR-122 expression, increased YY1 expression and inhibited the ACE2-MAS1 signaling pathway. Interference or overexpression of glucocorticoid receptor (GR), miR-122, YY1 and ACE2 could reverse the changes in downstream gene expression. In summary, PDE could induce NAFLD in adult male rat offspring. The programming mechanism included inhibition of miR-122 expression after GR activation, and dexamethasone increased hepatocyte YY1 expression; these effects resulted in ACE2-MAS1 signaling pathway inhibition, which led to increased hepatic triglyceride synthesis and decreased oxidative function. The increased triglyceride synthesis and decreased oxidative function of hepatocytes caused by low miR-122 expression due to dexamethasone could continue postnatally, eventually leading to NAFLD in adult rat offspring.

Identifiants

pubmed: 33460628
pii: S0006-2952(21)00016-2
doi: 10.1016/j.bcp.2021.114420
pii:
doi:

Substances chimiques

Anti-Inflammatory Agents 0
MAS1 protein, human 0
MIRN122 microRNA, rat 0
Mas1 protein, rat 0
MicroRNAs 0
Proto-Oncogene Mas 0
Proto-Oncogene Proteins 0
Receptors, G-Protein-Coupled 0
YY1 Transcription Factor 0
Yy1 protein, rat 0
Dexamethasone 7S5I7G3JQL
Ace2 protein, rat EC 3.4.17.23
Angiotensin-Converting Enzyme 2 EC 3.4.17.23

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

114420

Informations de copyright

Copyright © 2021 Elsevier Inc. All rights reserved.

Auteurs

Heze Liu (H)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.

Bo He (B)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.

Wen Hu (W)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.

Kexin Liu (K)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.

Yongguo Dai (Y)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.

Dingmei Zhang (D)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.

Hui Wang (H)

Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China. Electronic address: wanghui19@whu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH