Structure of trypanosome coat protein VSGsur and function in suramin resistance.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
03 2021
Historique:
received: 05 06 2020
accepted: 30 11 2020
pubmed: 20 1 2021
medline: 13 5 2021
entrez: 19 1 2021
Statut: ppublish

Résumé

Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.

Identifiants

pubmed: 33462435
doi: 10.1038/s41564-020-00844-1
pii: 10.1038/s41564-020-00844-1
pmc: PMC7116837
mid: EMS114721
doi:

Substances chimiques

Trypanocidal Agents 0
VSGsur protein, Trypanosoma brucei rhodesiense 0
Variant Surface Glycoproteins, Trypanosoma 0
Suramin 6032D45BEM

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

392-400

Subventions

Organisme : Swiss National Science Foundation
ID : 156264
Pays : Switzerland

Références

Ponte-Sucre, A. An overview of Trypanosoma brucei infections: an intense host–parasite interaction. Front. Microbiol. 7, 2126 (2016).
pubmed: 28082973 pmcid: 5183608 doi: 10.3389/fmicb.2016.02126
Keating, J., Yukich, J. O., Sutherland, C. S., Woods, G. & Tediosi, F. Human African trypanosomiasis prevention, treatment and control costs: a systematic review. Acta Trop. 150, 4–13 (2015).
pubmed: 26056739 doi: 10.1016/j.actatropica.2015.06.003
Radwanska, M., Vereecke, N., Deleeuw, V., Pinto, J. & Magez, S. Salivarian trypanosomosis: a review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol. 9, 2253 (2018).
pubmed: 30333827 pmcid: 6175991 doi: 10.3389/fimmu.2018.02253
Matthews, K. R., McCulloch, R. & Morrison, L. J. The within-host dynamics of African trypanosome infections. Philos. Trans. R. Soc. Lond. B 370, 20140288 (2015).
doi: 10.1098/rstb.2014.0288
Mugnier, M. R., Stebbins, C. E. & Papavasiliou, F. N. Masters of disguise: antigenic variation and the VSG coat in Trypanosoma brucei. PLoS Pathog. 12, e1005784 (2016).
pubmed: 27583379 pmcid: 5008768 doi: 10.1371/journal.ppat.1005784
Cross, G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393–417 (1975).
pubmed: 645 doi: 10.1017/S003118200004717X
Overath, P. & Engstler, M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol. Microbiol. 53, 735–744 (2004).
pubmed: 15255888 doi: 10.1111/j.1365-2958.2004.04224.x
Aresta-Branco, F., Erben, E., Papavasiliou, F. N. & Stebbins, C. E. Mechanistic similarities between antigenic variation and antibody diversification during Trypanosoma brucei infection. Trends Parasitol. 35, 302–315 (2019).
pubmed: 30826207 doi: 10.1016/j.pt.2019.01.011
Bangs, J. D. Evolution of antigenic variation in African trypanosomes: variant surface glycoprotein expression, structure, and function. BioEssays 40, 1800181 (2018).
doi: 10.1002/bies.201800181
Carrington, M. & Higgins, M. K. O-h what a surprise. Nat. Microbiol. 3, 856–857 (2018).
pubmed: 30046170 doi: 10.1038/s41564-018-0211-x
Schnitzer, R. J. & Hawking, F. Experimental Chemotherapy (Elsevier, 2013).
Steverding, D. The development of drugs for treatment of sleeping sickness: a historical review. Parasit. Vectors 3, 15 (2010).
pubmed: 20219092 pmcid: 2848007 doi: 10.1186/1756-3305-3-15
Lindner, A. K. et al. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect. Dis. 20, e38–e46 (2020).
pubmed: 31879061 doi: 10.1016/S1473-3099(19)30612-7
Sanderson, L., Khan, A. & Thomas, S. Distribution of suramin, an antitrypanosomal drug, across the blood–brain and blood–cerebrospinal fluid interfaces in wild-type and P-glycoprotein transporter-deficient mice. Antimicrob. Agents Chemother. 51, 3136–3146 (2007).
pubmed: 17576845 pmcid: 2043191 doi: 10.1128/AAC.00372-07
Gill, B. S. & Malhotra, M. N. Prophylactic activity of suramin complexes in ‘Surra’ (Trypanosoma evansi). Nature 200, 285–286 (1963).
pubmed: 14081088 doi: 10.1038/200285a0
WHO Model Lists of Essential Medicines (WHO, accessed 12 December 2020); https://www.who.int/publications/i/item/WHOMVPEMPIAU2019.06
Stein, C. A. Suramin: a novel antineoplastic agent with multiple potential mechanisms of action. Cancer Res. 53, 2239–2248 (1993).
pubmed: 8485709
Wiedemar, N. et al. Beyond immune escape: a variant surface glycoprotein causes suramin resistance in Trypanosoma brucei: suramin resistance in T. brucei. Mol. Microbiol. 107, 57–67 (2018).
pubmed: 28963732 doi: 10.1111/mmi.13854
Babokhov, P., Sanyaolu, A. O., Oyibo, W. A., Fagbenro-Beyioku, A. F. & Iriemenam, N. C. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog. Glob. Health 107, 242–252 (2013).
pubmed: 23916333 pmcid: 4001453 doi: 10.1179/2047773213Y.0000000105
Thomas, J. A. et al. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl. Trop. Dis. 12, e0006980 (2018).
pubmed: 30475806 pmcid: 6283605 doi: 10.1371/journal.pntd.0006980
Alsford, S. et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482, 232–236 (2012).
pubmed: 22278056 pmcid: 3303116 doi: 10.1038/nature10771
Vansterkenburg, E. L. et al. The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Trop. 54, 237–250 (1993).
pubmed: 7902661 doi: 10.1016/0001-706X(93)90096-T
Wiedemar, N. et al. Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in Trypanosoma brucei. FASEB BioAdvances 1, 595–608 (2019).
pubmed: 32123811 pmcid: 6996322 doi: 10.1096/fba.2019-00033
Bartossek, T. et al. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nat. Microbiol. 2, 1523–1532 (2017).
pubmed: 28894098 doi: 10.1038/s41564-017-0013-6
Pinger, J. et al. African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nat. Microbiol. 3, 932–938 (2018).
pubmed: 29988048 pmcid: 6108419 doi: 10.1038/s41564-018-0187-6
Freymann, D. et al. 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J. Mol. Biol. 216, 141–160 (1990).
pubmed: 2231728 doi: 10.1016/S0022-2836(05)80066-X
Metcalf, P., Blum, M., Freymann, D., Turner, M. & Wiley, D. C. Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 Å resolution X-ray structures. Nature 325, 84–86 (1987).
pubmed: 2432433 doi: 10.1038/325084a0
Hartel, A. J. et al. N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. Nat. Commun. 7, 12870 (2016).
pubmed: 27641538 pmcid: 5031801 doi: 10.1038/ncomms12870
Zoll, S. et al. The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat. Microbiol. 3, 295–301 (2018).
pubmed: 29358741 doi: 10.1038/s41564-017-0085-3
Higgins, M. K. et al. Structure of the trypanosome haptoglobin–hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl Acad. Sci. USA 110, 1905–1910 (2013).
pubmed: 23319650 doi: 10.1073/pnas.1214943110
Engstler, M. et al. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J. Cell Sci. 117, 1105–1115 (2004).
pubmed: 14996937 doi: 10.1242/jcs.00938
Zoltner, M. et al. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J. Biol. Chem. 295, 8331–8347 (2020).
pubmed: 32354742 pmcid: 7294092 doi: 10.1074/jbc.RA120.012355
Warren, G. Transport through the Golgi in Trypanosoma brucei. Histochem. Cell Biol. 140, 235–238 (2013).
pubmed: 23765165 doi: 10.1007/s00418-013-1112-y
Manna, P. T., Boehm, C., Leung, K. F., Natesan, S. K. & Field, M. C. Life and times: synthesis, trafficking, and evolution of VSG. Trends Parasitol. 30, 251–258 (2014).
pubmed: 24731931 pmcid: 4007029 doi: 10.1016/j.pt.2014.03.004
Rotureau, B., Subota, I. & Bastin, P. Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cell. Microbiol 13, 705–716 (2011).
pubmed: 21159115 doi: 10.1111/j.1462-5822.2010.01566.x
Figueiredo, L. M., Janzen, C. J. & Cross, G. A. M. A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol. 6, e161 (2008).
pubmed: 18597556 pmcid: 2443197 doi: 10.1371/journal.pbio.0060161
Alsford, S. & Horn, D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol. Biochem. Parasitol. 161, 76–79 (2008).
pubmed: 18588918 doi: 10.1016/j.molbiopara.2008.05.006
Schumann Burkard, G., Jutzi, P. & Roditi, I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasitol. 175, 91–94 (2011).
pubmed: 20851719 doi: 10.1016/j.molbiopara.2010.09.002
Hirumi, H. & Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75, 985–989 (1989).
pubmed: 2614608 doi: 10.2307/3282883
Cross, G. A. Release and purification of Trypanosoma brucei variant surface glycoprotein. J. Cell. Biochem. 24, 79–90 (1984).
pubmed: 6725422 doi: 10.1002/jcb.240240107
Rypniewski, W. R., Holden, H. M. & Rayment, I. Structural consequences of reductive methylation of lysine residues in hen egg white lysozyme: an X-ray analysis at 1.8-A resolution. Biochemistry 32, 9851–9858 (1993).
pubmed: 8373783 doi: 10.1021/bi00088a041
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
pubmed: 18156677 doi: 10.1107/S0108767307043930
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 doi: 10.1107/S0907444909052925
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).
pubmed: 21460441 doi: 10.1107/S0907444910045749
Beck, T., Krasauskas, A., Gruene, T. & Sheldrick, G. M. A magic triangle for experimental phasing of macromolecules. Acta Crystallogr. D 64, 1179–1182 (2008).
pubmed: 19020357 doi: 10.1107/S0907444908030266
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).
pubmed: 16855301 doi: 10.1107/S0907444906019949
Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).
pubmed: 18600222 pmcid: 2582149 doi: 10.1038/nprot.2008.91
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 doi: 10.1107/S0907444910007493
Aline, R. et al. (TAA)n within sequences flanking several intrachromosomal variant surface glycoprotein genes in Trypanosoma brucei. Nucleic Acids Res. 13, 3161–3177 (1985).
pubmed: 2987874 pmcid: 341227 doi: 10.1093/nar/13.9.3161
Cross, G. A. M., Kim, H.-S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).
pubmed: 24992042 doi: 10.1016/j.molbiopara.2014.06.004
Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984).
pubmed: 6502707 doi: 10.1016/0022-2836(84)90309-7
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D 67, 386–394 (2011).
pubmed: 21460457 doi: 10.1107/S0907444911007281
The PyMOL Molecular Graphics System, v.1.8 (Schrödinger, LLC, 2015).
de Beer, T. A. P., Berka, K., Thornton, J. M. & Laskowski, R. A. PDBsum additions. Nucleic Acids Res. 42, D292–D296 (2014).
pubmed: 24153109 doi: 10.1093/nar/gkt940
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).
pubmed: 21919503 doi: 10.1021/ci200227u

Auteurs

Johan Zeelen (J)

Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.

Monique van Straaten (M)

Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.

Joseph Verdi (J)

Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.
Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.

Alexander Hempelmann (A)

Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.

Hamidreza Hashemi (H)

Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.

Kathryn Perez (K)

Protein Expression and Purification Core Facility, EMBL Heidelberg, Heidelberg, Germany.

Philip D Jeffrey (PD)

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Silvan Hälg (S)

Swiss Tropical and Public Health Institute, Basel, Switzerland.
University of Basel, Basel, Switzerland.

Natalie Wiedemar (N)

Swiss Tropical and Public Health Institute, Basel, Switzerland.
University of Basel, Basel, Switzerland.

Pascal Mäser (P)

Swiss Tropical and Public Health Institute, Basel, Switzerland.
University of Basel, Basel, Switzerland.

F Nina Papavasiliou (FN)

Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.

C Erec Stebbins (CE)

Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany. e.stebbins@dkfz-heidelberg.de.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH