Structure of trypanosome coat protein VSGsur and function in suramin resistance.
Antigenic Variation
/ drug effects
Binding Sites
Crystallography, X-Ray
Drug Resistance
/ genetics
Endocytosis
/ genetics
Immune Evasion
Mutation
Protein Binding
Protein Conformation
Suramin
/ metabolism
Trypanocidal Agents
/ metabolism
Trypanosoma brucei rhodesiense
/ chemistry
Trypanosomiasis, African
/ parasitology
Variant Surface Glycoproteins, Trypanosoma
/ chemistry
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
05
06
2020
accepted:
30
11
2020
pubmed:
20
1
2021
medline:
13
5
2021
entrez:
19
1
2021
Statut:
ppublish
Résumé
Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.
Identifiants
pubmed: 33462435
doi: 10.1038/s41564-020-00844-1
pii: 10.1038/s41564-020-00844-1
pmc: PMC7116837
mid: EMS114721
doi:
Substances chimiques
Trypanocidal Agents
0
VSGsur protein, Trypanosoma brucei rhodesiense
0
Variant Surface Glycoproteins, Trypanosoma
0
Suramin
6032D45BEM
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
392-400Subventions
Organisme : Swiss National Science Foundation
ID : 156264
Pays : Switzerland
Références
Ponte-Sucre, A. An overview of Trypanosoma brucei infections: an intense host–parasite interaction. Front. Microbiol. 7, 2126 (2016).
pubmed: 28082973
pmcid: 5183608
doi: 10.3389/fmicb.2016.02126
Keating, J., Yukich, J. O., Sutherland, C. S., Woods, G. & Tediosi, F. Human African trypanosomiasis prevention, treatment and control costs: a systematic review. Acta Trop. 150, 4–13 (2015).
pubmed: 26056739
doi: 10.1016/j.actatropica.2015.06.003
Radwanska, M., Vereecke, N., Deleeuw, V., Pinto, J. & Magez, S. Salivarian trypanosomosis: a review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol. 9, 2253 (2018).
pubmed: 30333827
pmcid: 6175991
doi: 10.3389/fimmu.2018.02253
Matthews, K. R., McCulloch, R. & Morrison, L. J. The within-host dynamics of African trypanosome infections. Philos. Trans. R. Soc. Lond. B 370, 20140288 (2015).
doi: 10.1098/rstb.2014.0288
Mugnier, M. R., Stebbins, C. E. & Papavasiliou, F. N. Masters of disguise: antigenic variation and the VSG coat in Trypanosoma brucei. PLoS Pathog. 12, e1005784 (2016).
pubmed: 27583379
pmcid: 5008768
doi: 10.1371/journal.ppat.1005784
Cross, G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393–417 (1975).
pubmed: 645
doi: 10.1017/S003118200004717X
Overath, P. & Engstler, M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol. Microbiol. 53, 735–744 (2004).
pubmed: 15255888
doi: 10.1111/j.1365-2958.2004.04224.x
Aresta-Branco, F., Erben, E., Papavasiliou, F. N. & Stebbins, C. E. Mechanistic similarities between antigenic variation and antibody diversification during Trypanosoma brucei infection. Trends Parasitol. 35, 302–315 (2019).
pubmed: 30826207
doi: 10.1016/j.pt.2019.01.011
Bangs, J. D. Evolution of antigenic variation in African trypanosomes: variant surface glycoprotein expression, structure, and function. BioEssays 40, 1800181 (2018).
doi: 10.1002/bies.201800181
Carrington, M. & Higgins, M. K. O-h what a surprise. Nat. Microbiol. 3, 856–857 (2018).
pubmed: 30046170
doi: 10.1038/s41564-018-0211-x
Schnitzer, R. J. & Hawking, F. Experimental Chemotherapy (Elsevier, 2013).
Steverding, D. The development of drugs for treatment of sleeping sickness: a historical review. Parasit. Vectors 3, 15 (2010).
pubmed: 20219092
pmcid: 2848007
doi: 10.1186/1756-3305-3-15
Lindner, A. K. et al. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect. Dis. 20, e38–e46 (2020).
pubmed: 31879061
doi: 10.1016/S1473-3099(19)30612-7
Sanderson, L., Khan, A. & Thomas, S. Distribution of suramin, an antitrypanosomal drug, across the blood–brain and blood–cerebrospinal fluid interfaces in wild-type and P-glycoprotein transporter-deficient mice. Antimicrob. Agents Chemother. 51, 3136–3146 (2007).
pubmed: 17576845
pmcid: 2043191
doi: 10.1128/AAC.00372-07
Gill, B. S. & Malhotra, M. N. Prophylactic activity of suramin complexes in ‘Surra’ (Trypanosoma evansi). Nature 200, 285–286 (1963).
pubmed: 14081088
doi: 10.1038/200285a0
WHO Model Lists of Essential Medicines (WHO, accessed 12 December 2020); https://www.who.int/publications/i/item/WHOMVPEMPIAU2019.06
Stein, C. A. Suramin: a novel antineoplastic agent with multiple potential mechanisms of action. Cancer Res. 53, 2239–2248 (1993).
pubmed: 8485709
Wiedemar, N. et al. Beyond immune escape: a variant surface glycoprotein causes suramin resistance in Trypanosoma brucei: suramin resistance in T. brucei. Mol. Microbiol. 107, 57–67 (2018).
pubmed: 28963732
doi: 10.1111/mmi.13854
Babokhov, P., Sanyaolu, A. O., Oyibo, W. A., Fagbenro-Beyioku, A. F. & Iriemenam, N. C. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog. Glob. Health 107, 242–252 (2013).
pubmed: 23916333
pmcid: 4001453
doi: 10.1179/2047773213Y.0000000105
Thomas, J. A. et al. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl. Trop. Dis. 12, e0006980 (2018).
pubmed: 30475806
pmcid: 6283605
doi: 10.1371/journal.pntd.0006980
Alsford, S. et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482, 232–236 (2012).
pubmed: 22278056
pmcid: 3303116
doi: 10.1038/nature10771
Vansterkenburg, E. L. et al. The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Trop. 54, 237–250 (1993).
pubmed: 7902661
doi: 10.1016/0001-706X(93)90096-T
Wiedemar, N. et al. Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in Trypanosoma brucei. FASEB BioAdvances 1, 595–608 (2019).
pubmed: 32123811
pmcid: 6996322
doi: 10.1096/fba.2019-00033
Bartossek, T. et al. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nat. Microbiol. 2, 1523–1532 (2017).
pubmed: 28894098
doi: 10.1038/s41564-017-0013-6
Pinger, J. et al. African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nat. Microbiol. 3, 932–938 (2018).
pubmed: 29988048
pmcid: 6108419
doi: 10.1038/s41564-018-0187-6
Freymann, D. et al. 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J. Mol. Biol. 216, 141–160 (1990).
pubmed: 2231728
doi: 10.1016/S0022-2836(05)80066-X
Metcalf, P., Blum, M., Freymann, D., Turner, M. & Wiley, D. C. Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 Å resolution X-ray structures. Nature 325, 84–86 (1987).
pubmed: 2432433
doi: 10.1038/325084a0
Hartel, A. J. et al. N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. Nat. Commun. 7, 12870 (2016).
pubmed: 27641538
pmcid: 5031801
doi: 10.1038/ncomms12870
Zoll, S. et al. The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat. Microbiol. 3, 295–301 (2018).
pubmed: 29358741
doi: 10.1038/s41564-017-0085-3
Higgins, M. K. et al. Structure of the trypanosome haptoglobin–hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl Acad. Sci. USA 110, 1905–1910 (2013).
pubmed: 23319650
doi: 10.1073/pnas.1214943110
Engstler, M. et al. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J. Cell Sci. 117, 1105–1115 (2004).
pubmed: 14996937
doi: 10.1242/jcs.00938
Zoltner, M. et al. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J. Biol. Chem. 295, 8331–8347 (2020).
pubmed: 32354742
pmcid: 7294092
doi: 10.1074/jbc.RA120.012355
Warren, G. Transport through the Golgi in Trypanosoma brucei. Histochem. Cell Biol. 140, 235–238 (2013).
pubmed: 23765165
doi: 10.1007/s00418-013-1112-y
Manna, P. T., Boehm, C., Leung, K. F., Natesan, S. K. & Field, M. C. Life and times: synthesis, trafficking, and evolution of VSG. Trends Parasitol. 30, 251–258 (2014).
pubmed: 24731931
pmcid: 4007029
doi: 10.1016/j.pt.2014.03.004
Rotureau, B., Subota, I. & Bastin, P. Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cell. Microbiol 13, 705–716 (2011).
pubmed: 21159115
doi: 10.1111/j.1462-5822.2010.01566.x
Figueiredo, L. M., Janzen, C. J. & Cross, G. A. M. A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol. 6, e161 (2008).
pubmed: 18597556
pmcid: 2443197
doi: 10.1371/journal.pbio.0060161
Alsford, S. & Horn, D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol. Biochem. Parasitol. 161, 76–79 (2008).
pubmed: 18588918
doi: 10.1016/j.molbiopara.2008.05.006
Schumann Burkard, G., Jutzi, P. & Roditi, I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasitol. 175, 91–94 (2011).
pubmed: 20851719
doi: 10.1016/j.molbiopara.2010.09.002
Hirumi, H. & Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75, 985–989 (1989).
pubmed: 2614608
doi: 10.2307/3282883
Cross, G. A. Release and purification of Trypanosoma brucei variant surface glycoprotein. J. Cell. Biochem. 24, 79–90 (1984).
pubmed: 6725422
doi: 10.1002/jcb.240240107
Rypniewski, W. R., Holden, H. M. & Rayment, I. Structural consequences of reductive methylation of lysine residues in hen egg white lysozyme: an X-ray analysis at 1.8-A resolution. Biochemistry 32, 9851–9858 (1993).
pubmed: 8373783
doi: 10.1021/bi00088a041
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
pubmed: 18156677
doi: 10.1107/S0108767307043930
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
doi: 10.1107/S0907444909052925
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).
pubmed: 21460441
doi: 10.1107/S0907444910045749
Beck, T., Krasauskas, A., Gruene, T. & Sheldrick, G. M. A magic triangle for experimental phasing of macromolecules. Acta Crystallogr. D 64, 1179–1182 (2008).
pubmed: 19020357
doi: 10.1107/S0907444908030266
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).
pubmed: 16855301
doi: 10.1107/S0907444906019949
Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).
pubmed: 18600222
pmcid: 2582149
doi: 10.1038/nprot.2008.91
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
doi: 10.1107/S0907444910007493
Aline, R. et al. (TAA)n within sequences flanking several intrachromosomal variant surface glycoprotein genes in Trypanosoma brucei. Nucleic Acids Res. 13, 3161–3177 (1985).
pubmed: 2987874
pmcid: 341227
doi: 10.1093/nar/13.9.3161
Cross, G. A. M., Kim, H.-S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).
pubmed: 24992042
doi: 10.1016/j.molbiopara.2014.06.004
Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984).
pubmed: 6502707
doi: 10.1016/0022-2836(84)90309-7
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D 67, 386–394 (2011).
pubmed: 21460457
doi: 10.1107/S0907444911007281
The PyMOL Molecular Graphics System, v.1.8 (Schrödinger, LLC, 2015).
de Beer, T. A. P., Berka, K., Thornton, J. M. & Laskowski, R. A. PDBsum additions. Nucleic Acids Res. 42, D292–D296 (2014).
pubmed: 24153109
doi: 10.1093/nar/gkt940
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).
pubmed: 21919503
doi: 10.1021/ci200227u