Poly(ethylene glycol)-Poly(beta-amino ester)-Based Nanoparticles for Suicide Gene Therapy Enhance Brain Penetration and Extend Survival in a Preclinical Human Glioblastoma Orthotopic Xenograft Model.
gene delivery
glioblastoma
nanoparticles
poly(beta-amino ester)
poly(ethylene glycol)
suicide gene therapy
Journal
ACS biomaterials science & engineering
ISSN: 2373-9878
Titre abrégé: ACS Biomater Sci Eng
Pays: United States
ID NLM: 101654670
Informations de publication
Date de publication:
11 05 2020
11 05 2020
Historique:
entrez:
19
1
2021
pubmed:
20
1
2021
medline:
13
5
2021
Statut:
ppublish
Résumé
Glioblastoma (GBM) is the most devastating brain cancer, and cures remain elusive with currently available neurosurgical, pharmacological, and radiation approaches. While retrovirus- and adenovirus-mediated suicide gene therapy using DNA encoding herpes simplex virus-thymidine kinase (HSV-tk) and prodrug ganciclovir has been suggested as a promising strategy, a nonviral approach for treatment in an orthotopic human primary brain tumor model has not previously been demonstrated. Delivery challenges include nanoparticle penetration through brain tumors, efficient cancer cell uptake, endosomal escape to the cytosol, and biodegradability. To meet these challenges, we synthesized poly(ethylene glycol)-modified poly(beta-amino ester) (PEG-PBAE) polymers to improve extracellular delivery and coencapsulated plasmid DNA with end-modified poly(beta-amino ester) (ePBAE) polymers to improve intracellular delivery as well. We created and evaluated a library of PEG-PBAE/ePBAE nanoparticles (NPs) for effective gene therapy against two independent primary human stem-like brain tumor initiating cells, a putative target to prevent GBM recurrence. The optimally engineered PEG-PBAE/ePBAE NP formulation demonstrated 54 and 82% transfection efficacies in GBM1A and BTIC375 cells respectively, in comparison to 37 and 66% for optimized PBAE NPs without PEG. The leading PEG-PBAE NP formulation also maintained sub-250 nm particle size up to 5 h, while PBAE NPs without PEG showed aggregation over time to micrometer-sized complexes. The comparative advantage demonstrated
Identifiants
pubmed: 33463272
doi: 10.1021/acsbiomaterials.0c00116
pmc: PMC8035708
mid: NIHMS1685760
doi:
Substances chimiques
Esters
0
Polymers
0
poly(beta-amino ester)
0
Polyethylene Glycols
3WJQ0SDW1A
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2943-2955Subventions
Organisme : NCI NIH HHS
ID : R01 CA195503
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB016721
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA183827
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA228133
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA200399
Pays : United States
Références
J Am Chem Soc. 2013 May 8;135(18):6951-7
pubmed: 23570657
J Control Release. 2020 Mar 10;319:311-321
pubmed: 31911154
Clin Cancer Res. 2014 May 1;20(9):2375-87
pubmed: 24789034
ACS Nano. 2015 Oct 27;9(10):10186-202
pubmed: 26361723
CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29
pubmed: 22237781
Adv Healthc Mater. 2013 Mar;2(3):468-80
pubmed: 23184674
J Vis Exp. 2010 Dec 01;(46):
pubmed: 21178958
Biomaterials. 2016 Sep;100:53-66
pubmed: 27240162
Theranostics. 2018 Oct 5;8(18):5025-5038
pubmed: 30429884
J Clin Oncol. 2006 Mar 1;24(7):1020-2
pubmed: 16505418
J Gene Med. 2012 Jul;14(7):445-58
pubmed: 22576955
N Engl J Med. 2005 Mar 10;352(10):987-96
pubmed: 15758009
Biomacromolecules. 2018 Aug 13;19(8):3361-3370
pubmed: 29940101
Int J Cancer. 1999 Oct 29;83(3):374-80
pubmed: 10495430
J Biomed Mater Res A. 2013 Jul;101(7):1837-45
pubmed: 23559534
Cancer Res. 1986 Oct;46(10):5276-81
pubmed: 3019523
ACS Nano. 2014 Apr 22;8(4):3232-41
pubmed: 24673565
Oncogene. 2002 Mar 28;21(14):2141-53
pubmed: 11948397
Radiother Oncol. 2012 Oct;105(1):57-63
pubmed: 22938726
J Control Release. 2017 Sep 28;262:37-46
pubmed: 28694032
Oncogene. 2016 Jul 21;35(29):3817-28
pubmed: 26616854
Nat Rev Drug Discov. 2005 Jul;4(7):581-93
pubmed: 16052241
Acta Biomater. 2016 Sep 1;41:293-301
pubmed: 27262740
Mol Pharm. 2019 Apr 1;16(4):1433-1443
pubmed: 30803231
Oncogene. 2003 Nov 24;22(53):8628-33
pubmed: 14634624
J Clin Oncol. 2003 Jul 1;21(13):2508-18
pubmed: 12839017
Am J Ophthalmol. 2000 May;129(5):701
pubmed: 10844080
ACS Nano. 2014 May 27;8(5):5141-53
pubmed: 24766032
Cancer Res. 1999 Feb 1;59(3):669-75
pubmed: 9973216
Sci Transl Med. 2012 Aug 29;4(149):149ra119
pubmed: 22932224
Exp Neurol. 2007 Jun;205(2):313-24
pubmed: 17459377
ACS Nano. 2015 Feb 24;9(2):1236-49
pubmed: 25643235
Cancer Res. 2020 Apr 15;80(8):1644-1655
pubmed: 32094299
J Gene Med. 2018 May;20(5):e3015
pubmed: 29575374
Bioeng Transl Med. 2016 Jun;1(2):149-159
pubmed: 28349127
Gene Ther. 1999 Apr;6(4):595-605
pubmed: 10476219
J Control Release. 2017 Oct 10;263:18-28
pubmed: 28351668
Nanoscale. 2019 Nov 14;11(42):20045-20057
pubmed: 31612183
Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):28-51
pubmed: 26456916
Bioconjug Chem. 2014 Jan 15;25(1):43-51
pubmed: 24320687
Biomaterials. 2019 Jul;209:79-87
pubmed: 31026613
Mol Pharm. 2012 Nov 5;9(11):3375-83
pubmed: 22970908
Front Biosci (Schol Ed). 2012 Jan 01;4(1):190-205
pubmed: 22202053
Brain Sci. 2017 Dec 20;7(12):
pubmed: 29261148
Biomaterials. 2010 Feb;31(5):998-1006
pubmed: 19850333
Carcinogenesis. 2015 Feb;36(2):177-85
pubmed: 25504149
Int J Nanomedicine. 2019 Dec 23;14:10047-10060
pubmed: 31920302
Cancer Res. 2004 Oct 1;64(19):7011-21
pubmed: 15466194
Nano Lett. 2018 Jul 11;18(7):4086-4094
pubmed: 29927251
Mol Ther. 2005 Jun;11(6):990-5
pubmed: 15922971
Adv Healthc Mater. 2015 May;4(7):1023-33
pubmed: 25761435
J Microsc. 1987 Sep;147(Pt 3):229-63
pubmed: 3430576
Biomaterials. 2011 Aug;32(23):5402-10
pubmed: 21536325