Highly Sensitive Fluorescent Probe for Detection of Paraquat Based on Nanocrystals.


Journal

Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 15 06 2020
accepted: 28 12 2020
pubmed: 20 1 2021
medline: 6 10 2021
entrez: 19 1 2021
Statut: ppublish

Résumé

Paraquat is one of the most toxic materials widely applied in agriculture in most countries. In the present study, a simple, innovative and inexpensive nano biosensor which is based on a thioglycolic acid (TGA) - CdTe@CdS core-shell nanocrystals (NCs) to detect paraquat, is suggested. The NCs based biosensor shows a linear working range of 10-100 nM, and limited detection of 3.5 nM. The proposed sensor that has been well used for the detection and determination of paraquat in natural water samples is collected from corn field and a canal located near to the corn field yielding recoveries as high as 98%. According to our findings, the developed biosensor shows reproducibility and high sensitivity to determine paraquat in natural water samples in which the amount of paraquat has low levels. The suggested method is efficiently applied to paraquat determination in the samples of natural water that are collected from a tap water and a canal located near to the cornfield.

Identifiants

pubmed: 33464455
doi: 10.1007/s10895-020-02679-9
pii: 10.1007/s10895-020-02679-9
doi:

Substances chimiques

Cadmium Compounds 0
Fluorescent Dyes 0
Sulfates 0
Thioglycolates 0
Water Pollutants, Chemical 0
2-mercaptoacetate 7857H94KHM
cadmium sulfate 947UNF3Z6O
Tellurium NQA0O090ZJ
Paraquat PLG39H7695
cadmium telluride STG188WO13

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

559-567

Références

Siangproh W, Somboonsuk T, Chailapakul O, Songsrirote K (2017) Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta 174:448–453. https://doi.org/10.1016/j.talanta.2017.06.045
doi: 10.1016/j.talanta.2017.06.045 pubmed: 28738607
dos Santos LBO, Infante CMC, Masini JC (2010) Development of a sequential injection–square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode. Anal Bioanal Chem 396:1897–1903. https://doi.org/10.1007/s00216-009-3429-x
doi: 10.1007/s00216-009-3429-x pubmed: 20084371
Chuntib P, Themsirimongkon S, Saipanya S, Jakmunee J (2017) Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/Nafion for sensitive determination of paraquat. Talanta 170:1–8. https://doi.org/10.1016/j.talanta.2017.03.073
doi: 10.1016/j.talanta.2017.03.073 pubmed: 28501144
Gao R, Choi N, Chang S-I et al (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681:87–91. https://doi.org/10.1016/j.aca.2010.09.036
doi: 10.1016/j.aca.2010.09.036 pubmed: 21035607
Sun S, Li F, Liu F et al (2015) Fluorescence detecting of paraquat using host-guest chemistry with cucurbit[8]uril. Sci Rep 4:3570. https://doi.org/10.1038/srep03570
doi: 10.1038/srep03570
de Figueiredo-Filho LCS, Baccarin M, Janegitz BC, Fatibello-Filho O (2017) A disposable and inexpensive bismuth film minisensor for a voltammetric determination of diquat and paraquat pesticides in natural water samples. Sensors Actuators B Chem 240:749–756. https://doi.org/10.1016/j.snb.2016.08.157
doi: 10.1016/j.snb.2016.08.157
Onyon LJ, Volans GN (1987) The epidemiology and prevention of paraquat poisoning. Hum Toxicol 6:19–29. https://doi.org/10.1177/096032718700600104
doi: 10.1177/096032718700600104 pubmed: 3546083
Tu J, Xiao L, Jiang Y et al (2015) Near-infrared fluorescent turn-on detection of paraquat using an assembly of squaraine and surfactants. Sensors Actuators B Chem 215:382–387. https://doi.org/10.1016/j.snb.2015.04.015
doi: 10.1016/j.snb.2015.04.015
Geng P, Jinzhang C, Lijing Z, Mengzhi X, Zezheng L, Jing Z, Zhiyi W, Xianqin Wang CW, Ma J (2017) Liver tissue metabonomics in rat after acute paraquat poisoning gas chromatography-mass spectrometry. Int J Clin Exp Med 10:937–943
Faust SD, Hunter NE (1965) Chemical methods for the detection of aquatic herbicides. J Am Water Works Assoc 57:1028–1037. https://doi.org/10.1002/j.1551-8833.1965.tb01494.x
doi: 10.1002/j.1551-8833.1965.tb01494.x
Gill R, Qua SC, Moffat AC (1983) High-performance liquid chromatography of paraquat and diquat in urine with rapid sample preparation involving ion-pair extraction on disposable cartridges of octadecyl-silica. J Chromatogr A 255:483–490. https://doi.org/10.1016/S0021-9673(01)88303-5
doi: 10.1016/S0021-9673(01)88303-5
Tomková H, Sokolová R, Opletal T et al (2018) Electrochemical sensor based on phospholipid modified glassy carbon electrode - determination of paraquat. J Electroanal Chem 821:33–39. https://doi.org/10.1016/j.jelechem.2017.12.048
doi: 10.1016/j.jelechem.2017.12.048
Jain A, Verma KK, Townshend A (1993) Determination of paraquat by flow-injection spectrophotometry. Anal Chim Acta 284:275–279. https://doi.org/10.1016/0003-2670(93)85311-7
doi: 10.1016/0003-2670(93)85311-7
Zhao Z, Zhang F, Zhang Z (2018) A facile fluorescent “turn-off” method for sensing paraquat based on pyranine-paraquat interaction. Spectrochim Acta Part A Mol Biomol Spectrosc 199:96–101. https://doi.org/10.1016/j.saa.2018.03.042
doi: 10.1016/j.saa.2018.03.042
Wigfield YY, McCormack KA, Grant R (1993) Simultaneous determination of residues of paraquat and diquat in potatoes using high-performance capillary electrophoresis with a ultraviolet detection. J Agric Food Chem 41:2315–2318. https://doi.org/10.1021/jf00036a018
doi: 10.1021/jf00036a018
Núñez O, Moyano E, Galceran M (2002) Solid-phase extraction and sample stacking–capillary electrophoresis for the determination of quaternary ammonium herbicides in drinking water. J Chromatogr A 946:275–282. https://doi.org/10.1016/S0021-9673(01)01562-X
doi: 10.1016/S0021-9673(01)01562-X pubmed: 11873975
Ensafi AA, Kazemifard N, Rezaei B (2015) A simple and rapid label-free fluorimetric biosensor for protamine detection based on glutathione-capped CdTe quantum dots aggregation. Biosens Bioelectron 71:243–248. https://doi.org/10.1016/j.bios.2015.04.015
doi: 10.1016/j.bios.2015.04.015 pubmed: 25912680
Ding L, Ruan Y, Li T et al (2018) Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sensors Actuators B Chem 273:9–17. https://doi.org/10.1016/j.snb.2018.06.012
doi: 10.1016/j.snb.2018.06.012
Dong L-Y, Wang L-Y, Wang X-F et al (2016) Development of fluorescent FRET probe for determination of glucose based on β-cyclodextrin modified ZnS-quantum dots and natural pigment 3-hydroxyflavone. Dye Pigment 128:170–178. https://doi.org/10.1016/j.dyepig.2016.01.032
doi: 10.1016/j.dyepig.2016.01.032
Ding L, Zhang B, Xu C et al (2016) Fluorescent glucose sensing using CdTe/CdS quantum dots–glucose oxidase complex. Anal Methods 8:2967–2970. https://doi.org/10.1039/C5AY03205A
doi: 10.1039/C5AY03205A
Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618. https://doi.org/10.1007/s00216-007-1703-3
doi: 10.1007/s00216-007-1703-3 pubmed: 17987281
Zhang M, Cao X, Li H et al (2012) Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Food Chem 135:1894–1900. https://doi.org/10.1016/j.foodchem.2012.06.070
doi: 10.1016/j.foodchem.2012.06.070 pubmed: 22953938
Shen S-L, Zhang X-F, Ge Y-Q et al (2018) A novel ratiometric fluorescent probe for the detection of HOCl based on FRET strategy. Sensors Actuators B Chem 254:736–741. https://doi.org/10.1016/j.snb.2017.07.158
doi: 10.1016/j.snb.2017.07.158
Frigerio C, Ribeiro DSM, Rodrigues SSM et al (2012) Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal Chim Acta 735:9–22. https://doi.org/10.1016/j.aca.2012.04.042
doi: 10.1016/j.aca.2012.04.042 pubmed: 22713912
Bagheri Z, Ehtesabi H, Hallaji Z et al (2018) Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicol Environ Saf 161:245–250. https://doi.org/10.1016/j.ecoenv.2018.05.071
doi: 10.1016/j.ecoenv.2018.05.071 pubmed: 29886311
Foubert A, Beloglazova NV, Rajkovic A et al (2016) Bioconjugation of quantum dots: Review & impact on future application. TrAC Trends Anal Chem 83:31–48. https://doi.org/10.1016/j.trac.2016.07.008
doi: 10.1016/j.trac.2016.07.008
Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2018) Fabrication and optimization of a sensitive tetracycline fluorescent nano-sensor based on oxidized starch polysaccharide biopolymer-capped CdTe/ZnS quantum dots: Box–Behnken design. J Photochem Photobiol A Chem 367:188–199. https://doi.org/10.1016/j.jphotochem.2018.08.021
doi: 10.1016/j.jphotochem.2018.08.021
Karakoti AS, Shukla R, Shanker R, Singh S (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interface Sci 215:28–45. https://doi.org/10.1016/j.cis.2014.11.004
doi: 10.1016/j.cis.2014.11.004 pubmed: 25467038
Banerjee A, Grazon C, Nadal B et al (2015) Fast, efficient, and stable conjugation of multiple DNA strands on colloidal quantum dots. Bioconjug Chem 26:1582–1589. https://doi.org/10.1021/acs.bioconjchem.5b00221
doi: 10.1021/acs.bioconjchem.5b00221 pubmed: 25992903
Banerjee A, Grazon C, Pons T et al (2017) A novel type of quantum dot–transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. Nanoscale 9:15453–15460. https://doi.org/10.1039/C7NR05838A
doi: 10.1039/C7NR05838A pubmed: 28976518
Wang J, Jiang P, Gao L et al (2013) Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots. J Nanoparticle Res 15:1914. https://doi.org/10.1007/s11051-013-1914-9
doi: 10.1007/s11051-013-1914-9
Su X, Chan C, Shi J et al (2017) A graphene quantum dot@Fe 3 O 4 @SiO 2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosens Bioelectron 92:489–495. https://doi.org/10.1016/j.bios.2016.10.076
doi: 10.1016/j.bios.2016.10.076 pubmed: 27839733
Jin T, Sun D, Su JY et al (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52. https://doi.org/10.1111/j.1750-3841.2008.01013.x
doi: 10.1111/j.1750-3841.2008.01013.x pubmed: 19200107
Zhou J, Deng W, Wang Y et al (2016) Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater 42:209–219. https://doi.org/10.1016/j.actbio.2016.06.021
doi: 10.1016/j.actbio.2016.06.021 pubmed: 27321673
Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737. https://doi.org/10.1021/ja0386905
doi: 10.1021/ja0386905 pubmed: 14677951
Feizi S, Zare H, Hoseinpour M (2018) Investigation of dosimetric characteristics of a core–shell quantum dots nano composite (CdTe/CdS/PMMA): fabrication of a new gamma sensor. Appl Phys A 124:420. https://doi.org/10.1007/s00339-018-1837-5
doi: 10.1007/s00339-018-1837-5
Zare H, Ghalkhani M, Akhavan O et al (2017) Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots. Mater Res Bull 95:532–538. https://doi.org/10.1016/j.materresbull.2017.08.015
doi: 10.1016/j.materresbull.2017.08.015
Li Y, Sun L, Liu Q et al (2016) Photoelectrochemical CaMV35S biosensor for discriminating transgenic from non-transgenic soybean based on SiO2@CdTe quantum dots core-shell nanoparticles as signal indicators. Talanta 161:211–218. https://doi.org/10.1016/j.talanta.2016.08.047
doi: 10.1016/j.talanta.2016.08.047 pubmed: 27769398
İnal EK (2020) A fluorescent chemosensor based on schiff base for the determination of Zn2+, Cd2 + and Hg2+. J Fluoresc 30:891–900. https://doi.org/10.1007/s10895-020-02563-6
doi: 10.1007/s10895-020-02563-6 pubmed: 32494939
Nirmal M, Dabbousi BO, Bawendi MG et al (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804. https://doi.org/10.1038/383802a0
doi: 10.1038/383802a0
Marandi M, Emrani B, Zare H (2017) Synthesis of highly luminescent CdTe/CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Opt Mater (Amst) 69:358–366. https://doi.org/10.1016/j.optmat.2017.04.058
doi: 10.1016/j.optmat.2017.04.058
Yu Y, Zhang K, Li Z, Sun S (2012) Synthesis and luminescence characteristics of DHLA-capped PbSe quantum dots with biocompatibility. Opt Mater (Amst) 34:793–798. https://doi.org/10.1016/j.optmat.2011.11.008
doi: 10.1016/j.optmat.2011.11.008
Wu T, He K, Zhan Q et al (2015) Partial protection of N-acetylcysteine against MPA-capped CdTe quantum dot-induced neurotoxicity in rat primary cultured hippocampal neurons. Toxicol Res (Camb) 4:1613–1622. https://doi.org/10.1039/C5TX00127G
doi: 10.1039/C5TX00127G
Chen Y, Chen Z, He Y et al (2010) L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology 21:125502. https://doi.org/10.1088/0957-4484/21/12/125502
doi: 10.1088/0957-4484/21/12/125502 pubmed: 20203361
Shankara Narayanan S, Sinha SS, Verma PK, Pal SK (2008) Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA. Chem Phys Lett 463:160–165. https://doi.org/10.1016/j.cplett.2008.08.057
doi: 10.1016/j.cplett.2008.08.057
Jhonsi MA, Renganathan R (2010) Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J Colloid Interface Sci 344:596–602. https://doi.org/10.1016/j.jcis.2010.01.022
doi: 10.1016/j.jcis.2010.01.022 pubmed: 20132944
Khan S, Carneiro LSA, Vianna MS et al (2017) Determination of histamine in tuna fish by photoluminescence sensing using thioglycolic acid modified CdTe quantum dots and cationic solid phase extraction. J Lumin 182:71–78. https://doi.org/10.1016/j.jlumin.2016.09.041
doi: 10.1016/j.jlumin.2016.09.041
Fernández-Argüelles MT, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2008) Simple bio-conjugation of polymer-coated quantum dots with antibodies for fluorescence-based immunoassays. Analyst 133:444. https://doi.org/10.1039/b802360n
doi: 10.1039/b802360n pubmed: 18365111
Shiohara A, Hanada S, Prabakar S et al (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132:248–253. https://doi.org/10.1021/ja906501v
doi: 10.1021/ja906501v pubmed: 20000400
Pourghobadi Z, Mirahmadpour P, Zare H (2018) Fluorescent biosensor for the selective determination of dopamine by TGA-capped CdTe quantum dots in human plasma samples. Opt Mater (Amst) 84:757–762. https://doi.org/10.1016/j.optmat.2018.08.003
doi: 10.1016/j.optmat.2018.08.003
Uvarov V, Popov I (2007) Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact 58:883–891. https://doi.org/10.1016/j.matchar.2006.09.002
doi: 10.1016/j.matchar.2006.09.002
Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Sci Bus Media, Berlin
Matylitsky VV, Dworak L, Breus VV et al (2009) Ultrafast charge separation in multiexcited CdSe quantum dots mediated by adsorbed electron acceptors. J Am Chem Soc 131:2424–2425. https://doi.org/10.1021/ja808084y
doi: 10.1021/ja808084y pubmed: 19191491
Li H, Liu J, Yang X (2015) Facile synthesis of glutathione-capped CdS quantum dots as a fluorescence sensor for rapid detection and quantification of paraquat. Anal Sci 31:1011–1017. https://doi.org/10.2116/analsci.31.1011
doi: 10.2116/analsci.31.1011 pubmed: 26460365
Jenkins R, de Vries JL (1997) An introduction to X-ray powder diffractometryNo Title. NV Philips 36:1128
Scherrer PJNGWG (1918) Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr Ges Wiss Göttingen 2:96–100
Ghalkhani M, Maghsoudi S, Saeedi R, Khaloo SS (2019) Ultrasensitive quantification of paraquat using a newly developed sensor based on silver nanoparticle-decorated carbon nanotubes. J Iran Chem Soc 16:1301–1309. https://doi.org/10.1007/s13738-019-01605-6
doi: 10.1007/s13738-019-01605-6

Auteurs

Zeinab Pourghobadi (Z)

Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran. zpourghobadi@gmail.com.

Hadis Makanali (H)

Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.

Hakimeh Zare (H)

Physics Department, Faculty of Science, Yazd University, P.Box 89195_714, Yazd, Iran.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Classifications MeSH