An auxin-mediated regulatory framework for wound-induced adventitious root formation in tomato shoot explants.
Solanum lycopersicum
adventitious rooting
auxin biosynthesis
auxin response
cell reprogramming
de novo root formation
hormone regulation
mechanical damage
polar auxin transport
tissue regeneration
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
30
12
2020
received:
20
08
2020
accepted:
04
01
2021
pubmed:
20
1
2021
medline:
2
9
2021
entrez:
19
1
2021
Statut:
ppublish
Résumé
Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.
Substances chimiques
Indoleacetic Acids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1642-1662Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Ahkami, A., Scholz, U., Steuernagel, B., Strickert, M., Haensch, K.-T., Druege, U., … Hajirezaei, M. R. (2014). Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida. PLoS One, 9, e100997.
Ahkami, A. H., Lischewski, S., Haensch, K. T., Porfirova, S., Hofmann, J., Rolletschek, H., … Hajirezaei, M. R. (2009). Molecular physiology of adventitious root formation in Petunia hybrida cuttings: Involvement of wound response and primary metabolism. New Phytologist, 181, 613-625.
Alaguero-Cordovilla, A., Gran-Gómez, F., Tormos-Moltó, S., & Pérez-Pérez, J. M. (2018). Morphological characterization of root system architecture in diverse tomato genotypes during early growth. International Journal of Molecular Sciences, 19, 3888.
Audran-Delalande, C., Bassa, C., Mila, I., Regad, F., Zouine, M., & Bouzayen, M. (2012). Genome-wide identification, functional analysis and expression profiling of the aux/IAA gene family in tomato. Plant and Cell Physiology, 53, 659-672.
Bellini, C., Pacurar, D. I., & Perrone, I. (2014). Adventitious roots and lateral roots: Similarities and differences. Annual Review of Plant Biology, 65, 639-666.
Bustillo-Avendaño, E., Ibáñez, S., Sanz, O., Barros, J. A. S., Gude, I., Perianez-Rodriguez, J., … Pérez-Pérez, J. M. (2018). Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis. Plant Physiology, 176, 1709-1727.
Canher, B., Heyman, J., Savina, M., Devendran, A., Eekhout, T., Vercauteren, I., … De Veylder, L. (2020). Rocks in the auxin stream: Wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proceedings of the National Academy of Sciences, 117, 16667-16677.
Chen, L., Tong, J., Xiao, L., Ruan, Y., Liu, J., Zeng, M., … Xu, L. (2016). YUCCA -mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany, 67, 4273-4284.
da Costa, C. T., Offringa, R., & Fett-Neto, A. G. (2020). The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. Plant Science, 290, 110294.
Dawood, T., Rieu, I., Wolters-Arts, M., Derksen, E. B., Mariani, C., & Visser, E. J. W. (2014). Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants, 6, plt058.
de Jong, M., Wolters-Arts, M., Schimmel, B. C., Stultiens, C. L., de Groot, P. F., Powers, S. J., & Rieu, I. (2015). Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. Journal of Experimental Botany, 66, 3405-3416.
de Klerk, G. J., van der Krieken, W., & de Jong, J. C. (1999). Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cellular & Developmental Biology. Plant, 35, 189-199.
Dekkers, B. J. W., Willems, L., Bassel, G. W., van Bolderen-Veldkamp, R. P. M., Ligterink, W., Hilhorst, H. W. M., & Bentsink, L. (2012). Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant & Cell Physiology, 53, 28-37.
Della Rovere, F., Fattorini, L., D'Angeli, S., Veloccia, A., Del Duca, S., Cai, G., … Altamura, M. M. (2015). Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers. Annals of Botany, 115, 617-628.
Della Rovere, F., Fattorini, L., D'Angeli, S., Veloccia, A., Falasca, G., & Altamura, M. M. (2013). Auxin and cytokinin control formation of the quiescent Centre in the adventitious root apex of Arabidopsis. Annals of Botany, 112, 1395-1407.
Druege, U., & Franken, P. (2019). Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: At the nexus of physiology, genetics, microbiology and horticulture. Physiologia Plantarum, 165, 58-72.
Druege, U., Franken, P., & Hajirezaei, M. R. (2016). Plant hormone homeostasis, signaling and function during adventitious root formation in cuttings. Frontiers in Plant Science, 7, 381.
Druege, U., Franken, P., Lischewski, S., Ahkami, A. H., Zerche, S., Hause, B., & Hajirezaei, M. R. (2014). Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. Frontiers in Plant Science, 5, 494.
Druege, U., Hilo, A., Pérez-Pérez, J. M., Klopotek, Y., Acosta, M., Shahinnia, F., … Hajirezaei, M. R. (2019). Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany, 123, 929-949.
Emmanuel, E., & Levy, A. A. (2002). Tomato mutants as tools for functional genomics. Current Opinion in Plant Biology, 5, 112-117.
Expósito-Rodríguez, M., Borges, A. A., Borges-Pérez, A., & Pérez, J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8, 131.
Feller, C., Bleiholder, H., Buhr, L., Hack, H., Hess, M., Klose, R., … Weber, E. (1995). Phänologische entwicklungsstadien von gemüsepflanzen: II. Fruchtgemüse und hülsenfrüchte. Nachrichtenblatt Des Deutschen Pflanzenschutzdienstes, 47, 217-232.
Fukaki, H., Tameda, S., Masuda, H., & Tasaka, M. (2002). Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. The Plant Journal, 29, 153-168.
Gonin, M., Bergougnoux, V., Nguyen, T. D., Gantet, P., & Champion, A. (2019). What makes adventitious roots? Plants, 8, 240.
Großkinsky, D. K., Albacete, A., Jammer, A., Krbez, P., van der Graaff, E., Pfeifhofer, H., & Roitsch, T. (2014). A rapid phytohormone and phytoalexin screening method for physiological phenotyping. Molecular Plant, 7, 1053-1056.
Grubbs, F. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11, 1-21.
Guan, L., Tayengwa, R., Cheng, Z. M., Peer, W. A., Murphy, A. S., & Zhao, M. (2019). Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biology, 19, 435.
Gutierrez, L., Bussell, J. D., Pacurar, D. I., Schwambach, J., Pacurar, M., & Bellini, C. (2009). Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell, 21, 3119-3132.
Heyman, J., Cools, T., Canher, B., Shavialenka, S., Traas, J., Vercauteren, I., … De Veylder, L. (2016). The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nature Plants, 2, 16165.
Hilo, A., Shahinnia, F., Druege, U., Franken, P., Melzer, M., Rutten, T., … Hajirezaei, M. R. (2017). A specific role of iron in promoting meristematic cell division during adventitious root formation. Journal of Experimental Botany, 68, 4233-4247.
Hoermayer, L., Montesinos, J. C., Marhava, P., Benková, E., Yoshida, S., & Friml, J. (2020). Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences, 117, 15322-15331.
Hošek, P., Kubeš, M., Laňková, M., Dobrev, P. I., Klíma, P., Kohoutová, M., … Zažímalová, E. (2012). Auxin transport at cellular level: New insights supported by mathematical modelling. Journal of Experimental Botany, 63, 3815-3827.
Hu, X., & Xu, L. (2016). Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology, 172, 2363-2373.
Huang, A., Wang, Y., Liu, Y., Wang, G., & She, X. (2020). Reactive oxygen species regulate auxin levels to mediate adventitious root induction in Arabidopsis hypocotyl cuttings. Jounal of Integrative Plant Biology, 62, 912-926.
Ivanchenko, M. G., Zhu, J., Wang, B., Medvecká, E., Du, Y., Azzarello, E., … Geisler, M. (2015). The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development, 142, 712-721.
Klopotek, Y., Franken, P., Klaering, H. P., Fischer, K., Hause, B., Hajirezaei, M. R., & Druege, U. (2016). A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings. Plant Science, 243, 10-22.
Kobayashi, M., Nagasaki, H., Garcia, V., Just, D., Bres, C., Mauxion, J.-P., … Aoki, K. (2014). Genome-wide analysis of intraspecific DNA polymorphism in ‘micro-tom’, a model cultivar of tomato (Solanum lycopersicum). Plant and Cell Physiology, 55, 445-454.
Kurihara, D., Mizuta, Y., Sato, Y., & Higashiyama, T. (2015). ClearSee: A rapid optical clearing reagent for whole-plant fluorescence imaging. Development, 142, 4168-4179.
Lakehal, A., & Bellini, C. (2019). Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum, 165, 90-100.
Lanková, M., Smith, R. S., Pesek, B., Kubes, M., Zazímalová, E., Petrásek, J., & Hoyerová, K. (2010). Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. Journal of Experimental Botany, 61, 3589-3598.
Lee, H. W., Cho, C., Pandey, S. K., Park, Y., Kim, M. J., & Kim, J. (2019). LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biology, 19, 46.
Lischweski, S., Muchow, A., Guthörl, D., & Hause, B. (2015). Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biology, 15, 229.
Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., & Xu, L. (2014). WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell, 26, 1081-1093.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402-408.
Lu, Y., Xie, L., & Chen, J. (2012). A novel procedure for absolute real-time quantification of gene expression patterns. Plant Methods, 8, 9.
Ludwig-Müller, J., Vertocnik, A., & Town, C. D. (2005). Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. Journal of Experimental Botany, 56, 2095-2105.
Matosevich, R., Cohen, I., Gil-Yarom, N., Modrego, A., Friedlander-Shani, L., Verna, C., … Efroni, I. (2020). Local auxin biosynthesis is required for root regeneration after wounding. Nature Plants, 6, 1020-1030.
Mhimdi, M., & Pérez-Pérez, J. M. (2020). Understanding of adventitious root formation: what can we learn from comparative genetics?. Frontiers in Plant Science, 11, 582020.
Mignolli, F., Mariotti, L., Picciarelli, P., & Vidoz, M. L. (2017). Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.). Journal of Plant Physiology, 213, 55-65.
Negi, S., Sukumar, P., Liu, X., Cohen, J. D., & Muday, G. K. (2010). Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. The Plant Journal, 61, 3-15.
Oh, K. C., Ivanchenko, M. G., White, T. J., & Lomax, T. L. (2006). The DIAGEOTROPICA gene of tomato encodes a cyclophilin: A novel player in auxin signaling. Planta, 224, 133-144.
Pacurar, D. I., Perrone, I., & Bellini, C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum, 151, 83-96.
Rakusová, H., Abbas, M., Han, H., Song, S., Robert, H. S., & Friml, J. (2016). Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Current Biology, 26, 3026-3032.
Rakusová, H., Gallego-Bartolomé, J., Vanstraelen, M., Robert, H. S., Alabadí, D., Blázquez, M. A., … Friml, J. (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal, 67, 817-826.
Rothan, C., Bres, C., Garcia, V., & Just, D. (2016). Tomato resources for functional genomics. In M. Causse, J. Giovannoni, M. Bouzayen, & M. Zouine (Eds.), The tomato genome. Compendium of plant genomes. Berlin, Heidelberg: Springer.
Rothan, C., Diouf, I., & Causse, M. (2019). Trait discovery and editing in tomato. The Plant Journal, 97, 73-90.
Shikata, M., Hoshikawa, K., Ariizumi, T., Fukuda, N., Yamazaki, Y., & Ezura, H. (2016). TOMATOMA update: Phenotypic and metabolite information in the micro-tom mutant resource. Plant and Cell Physiology, 57, e11.
Smetana, O., Mäkilä, R., Lyu, M., Amiryousefi, A., Sánchez-Rodríguez, F., Wu, M. F., … Mähönen, A. P. (2019). High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 565, 485-489.
Sorin, C., Bussell, J. D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G., … Bellini, C. (2005). Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. The Plant Cell, 17, 1343-1359.
Su, S.-H., Gibbs, N. M., Jancewicz, A. L., & Masson, P. H. (2017). Molecular mechanisms of root gravitropism. Current Biology, 27, R964-R972.
Sukumar, P., Maloney, G. S., & Muday, G. K. (2013). Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiology, 162, 1392-1405.
Teale, W., & Palme, K. (2018). Naphthylphthalamic acid and the mechanism of polar auxin transport. Journal of Experimental Botany, 69, 303-312.
Tsugafune, S., Mashiguchi, K., Fukui, K., Takebayashi, Y., Nishimura, T., Sakai, T., … Hayashi, K. I. (2017). Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants. Scientific Reports, 7, 13992.
Tyburski, J., & Tretyn, A. (2004). The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings. Plant Growth Regulation, 42, 39-48.
Vidoz, M. L., Loreti, E., Mensuali, A., Alpi, A., & Perata, P. (2010). Hormonal interplay during adventitious root formation in flooded tomato plants. The Plant Journal, 63, 551-562.
Villacorta-Martín, C., Sánchez-García, A. B., Villanova, J., Cano, A., van de Rhee, M., de Haan, J., … Pérez-Pérez, J. M. (2015). Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics, 16, 789.
Welander, M., Geier, T., Smolka, A., Ahlman, A., Fan, J., & Zhu, L. H. (2014). Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems. American Journal of Botany, 101, 255-266.
Wu, J., Peng, Z., Liu, S., He, Y., Cheng, L., Kong, F., … Lu, G. (2012). Genome-wide analysis of aux/IAA gene family in Solanaceae species using tomato as a model. Molecular Genetics and Genomics, 287, 295-311.
Yang, H., Klopotek, Y., Hajirezaei, M. R., Zerche, S., Franken, P., & Druege, U. (2019). Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings. Annals of Botany, 124, 1053-1066.
Ye, B.-B., Shang, G. D., Pan, Y., Xu, Z. G., Zhou, C. M., Mao, Y. B., … Wang, J. W. (2020). AP2/ERF transcription factors integrate age and wound signals for root regeneration. The Plant Cell, 32, 226-241.
Zerche, S., Haensch, K.-T. T., Druege, U., & Hajirezaei, M. R. (2016). Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida. BMC Plant Biology, 16, 219.
Zhang, G., Zhao, F., Chen, L., Pan, Y., Sun, L., Bao, N., … Xu, L. (2019). Jasmonate-mediated wound signalling promotes plant regeneration. Nature Plants, 5, 491-497.
Zhang, J., Chen, R., Xiao, J., Qian, C., Wang, T., Li, H., … Ye, Z. (2007). A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant. Journal of Plant Research, 120, 671-678.
Zhou, W., Lozano-Torres, J. L., Blilou, I., Zhang, X., Zhai, Q., Smant, G., … Scheres, B. (2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell, 177, 942-946.
Zouine, M., Fu, Y., Chateigner-Boutin, A. L., Mila, I., Frasse, P., Wang, H., … Bouzayen, M. (2014). Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS One, 9, e84203.