Quality traits drive the enrichment of Massilia in the rhizosphere to improve soybean oil content.


Journal

Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 29 10 2023
accepted: 13 09 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Soybean seeds are rich in protein and oil. The selection of varieties that produce high-quality seeds has been one of the priorities of soybean breeding programs. However, the influence of improved seed quality on the rhizosphere microbiota and whether the microbiota is involved in determining seed quality are still unclear. Here, we analyzed the structures of the rhizospheric bacterial communities of 100 soybean varieties, including 53 landraces and 47 modern cultivars, and evaluated the interactions between seed quality traits and rhizospheric bacteria. We found that rhizospheric bacterial structures differed between landraces and cultivars and that this difference was directly related to their oil content. Seven bacterial families (Sphingomonadaceae, Gemmatimonadaceae, Nocardioidaceae, Xanthobacteraceae, Chitinophagaceae, Oxalobacteraceae, and Streptomycetaceae) were obviously enriched in the rhizospheres of the high-oil cultivars. Among them, Oxalobacteraceae (Massilia) was assembled specifically by the root exudates of high-oil cultivars and was associated with the phenolic acids and flavonoids in plant phenylpropanoid biosynthetic pathways. Furthermore, we showed that Massilia affected auxin signaling or interfered with active oxygen-related metabolism. In addition, Massilia activated glycolysis pathway, thereby promoting seed oil accumulation. These results provide a solid theoretical basis for the breeding of revolutionary soybean cultivars with desired seed quality and optimal microbiomes and the development of new cultivation strategies for increasing the oil content of seeds. Video Abstract.

Sections du résumé

BACKGROUND BACKGROUND
Soybean seeds are rich in protein and oil. The selection of varieties that produce high-quality seeds has been one of the priorities of soybean breeding programs. However, the influence of improved seed quality on the rhizosphere microbiota and whether the microbiota is involved in determining seed quality are still unclear. Here, we analyzed the structures of the rhizospheric bacterial communities of 100 soybean varieties, including 53 landraces and 47 modern cultivars, and evaluated the interactions between seed quality traits and rhizospheric bacteria.
RESULTS RESULTS
We found that rhizospheric bacterial structures differed between landraces and cultivars and that this difference was directly related to their oil content. Seven bacterial families (Sphingomonadaceae, Gemmatimonadaceae, Nocardioidaceae, Xanthobacteraceae, Chitinophagaceae, Oxalobacteraceae, and Streptomycetaceae) were obviously enriched in the rhizospheres of the high-oil cultivars. Among them, Oxalobacteraceae (Massilia) was assembled specifically by the root exudates of high-oil cultivars and was associated with the phenolic acids and flavonoids in plant phenylpropanoid biosynthetic pathways. Furthermore, we showed that Massilia affected auxin signaling or interfered with active oxygen-related metabolism. In addition, Massilia activated glycolysis pathway, thereby promoting seed oil accumulation.
CONCLUSIONS CONCLUSIONS
These results provide a solid theoretical basis for the breeding of revolutionary soybean cultivars with desired seed quality and optimal microbiomes and the development of new cultivation strategies for increasing the oil content of seeds. Video Abstract.

Identifiants

pubmed: 39478571
doi: 10.1186/s40168-024-01933-7
pii: 10.1186/s40168-024-01933-7
doi:

Substances chimiques

Soybean Oil 8001-22-7
Indoleacetic Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

224

Informations de copyright

© 2024. The Author(s).

Références

Kim E, Hwang S, Lee I. SoyNet: a database of co-functional networks for soybean Glycine max. Nucleic Acids Res. 2017;45(D1):D1082–9.
pubmed: 27492285 doi: 10.1093/nar/gkw704
Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 2021;15(11):3181–94.
pubmed: 33980999 pmcid: 8528814 doi: 10.1038/s41396-021-00993-z
Eskandari M, Cober ER, Rajcan I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet. 2013;126(6):1677–87.
pubmed: 23536049 doi: 10.1007/s00122-013-2083-z
Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, et al. Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci. 2015;6:1021.
pubmed: 26635846 pmcid: 4657443 doi: 10.3389/fpls.2015.01021
Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17(3):392–403.
pubmed: 25732064 pmcid: 4362959 doi: 10.1016/j.chom.2015.01.011
Leff JW, Lynch RC, Kane NC, Fierer N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower. Helianthus annuus New Phytol. 2017;214(1):412–23.
pubmed: 27879004 doi: 10.1111/nph.14323
Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 2017;11(10):2244–57.
pubmed: 28585939 pmcid: 5607367 doi: 10.1038/ismej.2017.85
Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM. The wild side of plant microbiomes. Microbiome. 2018;6(1):143.
pubmed: 30115122 pmcid: 6097318 doi: 10.1186/s40168-018-0519-z
Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12(12):3038–42.
pubmed: 30018368 pmcid: 6246553 doi: 10.1038/s41396-018-0234-6
Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome. 2019;7(1):136.
pubmed: 31640813 pmcid: 6806522 doi: 10.1186/s40168-019-0750-2
Brown SP, Grillo MA, Podowski JC, Heath KD. Correction to: Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome. 2021;9(1):105.
pubmed: 33971961 pmcid: 8112050 doi: 10.1186/s40168-021-01080-3
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–21.
pubmed: 32788714 doi: 10.1038/s41579-020-0412-1
Jackrel SL, Yang JW, Schmidt KC, Denef VJ. Host specificity of microbiome assembly and its fitness effects in phytoplankton. ISME J. 2021;15(3):774–88.
pubmed: 33097853 doi: 10.1038/s41396-020-00812-x
Hartmann A, Schmid M, Tuinen DV, Berg G. Plant-driven selection of microbes. Plant Soil. 2009;321(1–2):235–57.
doi: 10.1007/s11104-008-9814-y
Marasco R, Mosqueira MJ, Fusi M, Ramond JB, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6(1):215.
pubmed: 30514367 pmcid: 6280439 doi: 10.1186/s40168-018-0597-y
Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FEZ, Achouak W, et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009;3(11):1243.
pubmed: 19554039 doi: 10.1038/ismej.2009.68
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome. Trends Plant Sci. 2018;23(1):25–41.
pubmed: 29050989 doi: 10.1016/j.tplants.2017.09.003
Zwetsloot MJ, Kessler A, Bauerle TL. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 2018;218(2):530–41.
pubmed: 29473651 doi: 10.1111/nph.15041
Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, Leson L, et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A. 2019;116(31):15735–44.
pubmed: 31311863 pmcid: 6681745 doi: 10.1073/pnas.1818604116
Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3(4):470–80.
pubmed: 29556109 doi: 10.1038/s41564-018-0129-3
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants. 2021;7(4):481–99.
pubmed: 33833418 doi: 10.1038/s41477-021-00897-y
Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, et al. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A. 2005;102(48):17454–9.
pubmed: 16301542 pmcid: 1297666 doi: 10.1073/pnas.0506407102
Micallef SA, Shiaris MP, Colón-Carmona A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot. 2009;60(6):1729–42.
pubmed: 19342429 pmcid: 2671628 doi: 10.1093/jxb/erp053
Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008;2(12):1221–30.
pubmed: 18754043 doi: 10.1038/ismej.2008.80
de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 2019;224(1):132–45.
pubmed: 31218693 pmcid: 6771481 doi: 10.1111/nph.16001
Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A. 2018;115(22):E5213–22.
pubmed: 29686086 pmcid: 5984513 doi: 10.1073/pnas.1722335115
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome. 2019;7(1):59.
pubmed: 30975184 pmcid: 6460791 doi: 10.1186/s40168-019-0677-7
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome. 2021;9(1):103.
pubmed: 33962687 pmcid: 8106187 doi: 10.1186/s40168-021-01049-2
Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome. 2018;6(1):231.
pubmed: 30587246 pmcid: 6307273 doi: 10.1186/s40168-018-0615-0
Yang K, Fu R, Feng H, Jiang G, Finkel O, Sun T, et al. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Mol Plant. 2023;16(9):1379–95.
pubmed: 37563832 doi: 10.1016/j.molp.2023.08.004
Alahmad A, Harir M, Fochesato S, Tulumello J, Walker A, Barakat M, et al. Unraveling the interplay between root exudates, microbiota, and rhizosheath formation in pearl millet. Microbiome. 2024;12(1):1.
pubmed: 38167150 pmcid: 10763007 doi: 10.1186/s40168-023-01727-3
Wan ET. Symbiosis between rhizobia and legumes. In: ecology and evolution of rhizobia. Singapore: Springer; 2019. p. 3–19.
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 2020;32(1):15–41.
pubmed: 31649123 doi: 10.1105/tpc.19.00279
Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signaling pathways and mediate plant defense responses involved in PAMP-triggered immunity. Environ Microbiol. 2015;17(4):1166–88.
pubmed: 24934960 doi: 10.1111/1462-2920.12538
Andrić S, Rigolet A, Argüelles Arias A, Steels S, Hoff G, Balleux G, et al. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. ISME J. 2023;17(2):263–75.
pubmed: 36357782 doi: 10.1038/s41396-022-01337-1
Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Islam SU, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J Appl Microbiol. 2022;133(5):2717–41.
pubmed: 36017561 doi: 10.1111/jam.15796
Zhang J, Liu YX, Zhang N, Hu B, Jin T, Jin T, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37(6):676–84.
pubmed: 31036930 doi: 10.1038/s41587-019-0104-4
Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL, et al. A single bacterial genus maintains root growth in a complex microbiome. Nature. 2020;587(7832):103–8.
pubmed: 32999461 pmcid: 10329457 doi: 10.1038/s41586-020-2778-7
Salas-González I, Reyt G, Flis P, Custódio V, Custódio V, Bakhoum N, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science. 2021;371(6525):eabd0695.
pubmed: 33214288 doi: 10.1126/science.abd0695
Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 2014;8(8):1577–87.
pubmed: 24553468 pmcid: 4817605 doi: 10.1038/ismej.2014.17
Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci U S A. 2016;113(49):E7996-8005.
pubmed: 27864511 pmcid: 5150415 doi: 10.1073/pnas.1616564113
Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112(8):E911–20.
pubmed: 25605935 pmcid: 4345613 doi: 10.1073/pnas.1414592112
Wang HW, Zhang B, Hao YJ, Huang J, Huang J, Liao Y, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J. 2007;52(4):716–29.
pubmed: 17877700 doi: 10.1111/j.1365-313X.2007.03268.x
Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, et al. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. Plant Biotechnol J. 2022;20(12):2406–17.
pubmed: 36056567 pmcid: 9674310 doi: 10.1111/pbi.13922
Wang Y, Wang D, Shi P, Omasa K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods. 2014;10(1): 36.
pubmed: 25411579 pmcid: 4236477 doi: 10.1186/1746-4811-10-36
Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, et al. Targeted knockout of BnTT2 homologues for Yellow-Seeded Brassica napus with reduced flavonoids and improved fatty acid composition. J Agric Food Chem. 2020;68(20):5676–90.
pubmed: 32394708 doi: 10.1021/acs.jafc.0c01126
Gholami A, De Geyter N, Pollier J, Goormachtig S, Goossens A. Natural product biosynthesis in Medicago species. Nat Prod Rep. 2014;31(3):356–80.
pubmed: 24481477 doi: 10.1039/c3np70104b
Andre C, Froehlich JE, Moll MR, Benning C. A Heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell. 2007;19(6):2006–22.
pubmed: 17557808 pmcid: 1955724 doi: 10.1105/tpc.106.048629
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants. 2019;5(9):924–32.
pubmed: 31506641 doi: 10.1038/s41477-019-0502-0
Martin RE, Postiglione AE, Muday GK. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. Curr Opin Plant Biol. 2022;69: 102293.
pubmed: 36099672 pmcid: 10475289 doi: 10.1016/j.pbi.2022.102293
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. Microbiome. 2018;6(1):78.
pubmed: 29695294 pmcid: 5922317 doi: 10.1186/s40168-018-0457-9
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206(4):1196–206.
pubmed: 25655016 doi: 10.1111/nph.13312
Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8(4):790–803.
pubmed: 24196324 doi: 10.1038/ismej.2013.196
Favela A, Bohn MO, Kent AD. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME J. 2021;15(8):2454–64.
pubmed: 33692487 pmcid: 8319409 doi: 10.1038/s41396-021-00923-z
Liu A, Ku YS, Contador CA, Lam HM. The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Front Genet. 2020;11: 583954.
pubmed: 33193716 pmcid: 7554533 doi: 10.3389/fgene.2020.583954
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. 2019;364(6440):eaau6389.
pubmed: 31073042 doi: 10.1126/science.aau6389
Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci U S A. 2019;116(25):12558–65.
pubmed: 31152139 pmcid: 6589675 doi: 10.1073/pnas.1820691116
Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe. 2020;28(6):825-37.e6.
pubmed: 33027611 pmcid: 7738756 doi: 10.1016/j.chom.2020.09.006
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, et al. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. Biotechnol Biofuels Bioprod. 2022;15(1):92.
pubmed: 36076247 pmcid: 9461130 doi: 10.1186/s13068-022-02191-1
Li C, Cao P, Du C, Zhang X, Bing H, Bing H, et al. Massilia rhizosphaerae sp. nov., a rice-associated rhizobacterium with antibacterial activity against Ralstonia solanacearum. Int J Syst Evol Microbiol. 2021;71(9).
Raths R, Peta V, Bücking H. Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol. 2020;70(6):3912–20.
pubmed: 32511088 doi: 10.1099/ijsem.0.004266
Huq MA, Ma J, Srinivasan S, Parvez MAK, Parvez MAK, Naserkheil M, et al. Massilia agrisoli sp. nov., isolated from rhizospheric soil of banana. Int J Syst Evol Microbiol. 2023;73(5).
Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One. 2012;7(7):e40117.
pubmed: 22808103 pmcid: 3394795 doi: 10.1371/journal.pone.0040117
Tkacz A, Cheema J, Chandra G, Grant A, Poole PS. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015;9(11):2349–59.
pubmed: 25909975 pmcid: 4611498 doi: 10.1038/ismej.2015.41
Du C, Li C, Cao P, Li T, Li T, Wang X, et al. Massilia cellulosiltytica sp. nov., a novel cellulose-degrading bacterium isolated from rhizosphere soil of rice (Oryza sativa L.) and its whole genome analysis. Antonie van Leeuwenhoek. 2021;114(10):1529–40.
pubmed: 34324104 doi: 10.1007/s10482-021-01618-3
Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, et al. Characterisation of waterborne psychrophilic Massilia isolates with violacein production and description of Massilia antarctica sp. nov. Microorganisms. 2022;10(4):704.
pubmed: 35456753 pmcid: 9028926 doi: 10.3390/microorganisms10040704

Auteurs

Qin Han (Q)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, People's Republic of China.

Guanghui Zhu (G)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Hongmei Qiu (H)

Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun, Jilin, 130033, People's Republic of China.

Mingbo Li (M)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Jiaming Zhang (J)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Xinying Wu (X)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Renhao Xiao (R)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Yan Zhang (Y)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Wei Yang (W)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Bing Tian (B)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Lanxi Xu (L)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Jiayang Zhou (J)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Yutong Li (Y)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Yueqiang Wang (Y)

Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun, Jilin, 130033, People's Republic of China. 82516942@qq.com.

Yang Bai (Y)

State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. ybai@genetics.ac.cn.

Xia Li (X)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China. xli@mail.hzau.edu.cn.
Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun, Jilin, 130033, People's Republic of China. xli@mail.hzau.edu.cn.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH