Quality traits drive the enrichment of Massilia in the rhizosphere to improve soybean oil content.
Glycolysis pathway
Improvements in host quality traits
Oil content
Phenylpropanoid biosynthetic pathways
Rhizosphere microbiota
Root exudates
Journal
Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
29
10
2023
accepted:
13
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Soybean seeds are rich in protein and oil. The selection of varieties that produce high-quality seeds has been one of the priorities of soybean breeding programs. However, the influence of improved seed quality on the rhizosphere microbiota and whether the microbiota is involved in determining seed quality are still unclear. Here, we analyzed the structures of the rhizospheric bacterial communities of 100 soybean varieties, including 53 landraces and 47 modern cultivars, and evaluated the interactions between seed quality traits and rhizospheric bacteria. We found that rhizospheric bacterial structures differed between landraces and cultivars and that this difference was directly related to their oil content. Seven bacterial families (Sphingomonadaceae, Gemmatimonadaceae, Nocardioidaceae, Xanthobacteraceae, Chitinophagaceae, Oxalobacteraceae, and Streptomycetaceae) were obviously enriched in the rhizospheres of the high-oil cultivars. Among them, Oxalobacteraceae (Massilia) was assembled specifically by the root exudates of high-oil cultivars and was associated with the phenolic acids and flavonoids in plant phenylpropanoid biosynthetic pathways. Furthermore, we showed that Massilia affected auxin signaling or interfered with active oxygen-related metabolism. In addition, Massilia activated glycolysis pathway, thereby promoting seed oil accumulation. These results provide a solid theoretical basis for the breeding of revolutionary soybean cultivars with desired seed quality and optimal microbiomes and the development of new cultivation strategies for increasing the oil content of seeds. Video Abstract.
Sections du résumé
BACKGROUND
BACKGROUND
Soybean seeds are rich in protein and oil. The selection of varieties that produce high-quality seeds has been one of the priorities of soybean breeding programs. However, the influence of improved seed quality on the rhizosphere microbiota and whether the microbiota is involved in determining seed quality are still unclear. Here, we analyzed the structures of the rhizospheric bacterial communities of 100 soybean varieties, including 53 landraces and 47 modern cultivars, and evaluated the interactions between seed quality traits and rhizospheric bacteria.
RESULTS
RESULTS
We found that rhizospheric bacterial structures differed between landraces and cultivars and that this difference was directly related to their oil content. Seven bacterial families (Sphingomonadaceae, Gemmatimonadaceae, Nocardioidaceae, Xanthobacteraceae, Chitinophagaceae, Oxalobacteraceae, and Streptomycetaceae) were obviously enriched in the rhizospheres of the high-oil cultivars. Among them, Oxalobacteraceae (Massilia) was assembled specifically by the root exudates of high-oil cultivars and was associated with the phenolic acids and flavonoids in plant phenylpropanoid biosynthetic pathways. Furthermore, we showed that Massilia affected auxin signaling or interfered with active oxygen-related metabolism. In addition, Massilia activated glycolysis pathway, thereby promoting seed oil accumulation.
CONCLUSIONS
CONCLUSIONS
These results provide a solid theoretical basis for the breeding of revolutionary soybean cultivars with desired seed quality and optimal microbiomes and the development of new cultivation strategies for increasing the oil content of seeds. Video Abstract.
Identifiants
pubmed: 39478571
doi: 10.1186/s40168-024-01933-7
pii: 10.1186/s40168-024-01933-7
doi:
Substances chimiques
Soybean Oil
8001-22-7
Indoleacetic Acids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
224Informations de copyright
© 2024. The Author(s).
Références
Kim E, Hwang S, Lee I. SoyNet: a database of co-functional networks for soybean Glycine max. Nucleic Acids Res. 2017;45(D1):D1082–9.
pubmed: 27492285
doi: 10.1093/nar/gkw704
Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 2021;15(11):3181–94.
pubmed: 33980999
pmcid: 8528814
doi: 10.1038/s41396-021-00993-z
Eskandari M, Cober ER, Rajcan I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet. 2013;126(6):1677–87.
pubmed: 23536049
doi: 10.1007/s00122-013-2083-z
Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, et al. Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci. 2015;6:1021.
pubmed: 26635846
pmcid: 4657443
doi: 10.3389/fpls.2015.01021
Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17(3):392–403.
pubmed: 25732064
pmcid: 4362959
doi: 10.1016/j.chom.2015.01.011
Leff JW, Lynch RC, Kane NC, Fierer N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower. Helianthus annuus New Phytol. 2017;214(1):412–23.
pubmed: 27879004
doi: 10.1111/nph.14323
Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 2017;11(10):2244–57.
pubmed: 28585939
pmcid: 5607367
doi: 10.1038/ismej.2017.85
Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM. The wild side of plant microbiomes. Microbiome. 2018;6(1):143.
pubmed: 30115122
pmcid: 6097318
doi: 10.1186/s40168-018-0519-z
Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12(12):3038–42.
pubmed: 30018368
pmcid: 6246553
doi: 10.1038/s41396-018-0234-6
Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome. 2019;7(1):136.
pubmed: 31640813
pmcid: 6806522
doi: 10.1186/s40168-019-0750-2
Brown SP, Grillo MA, Podowski JC, Heath KD. Correction to: Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome. 2021;9(1):105.
pubmed: 33971961
pmcid: 8112050
doi: 10.1186/s40168-021-01080-3
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–21.
pubmed: 32788714
doi: 10.1038/s41579-020-0412-1
Jackrel SL, Yang JW, Schmidt KC, Denef VJ. Host specificity of microbiome assembly and its fitness effects in phytoplankton. ISME J. 2021;15(3):774–88.
pubmed: 33097853
doi: 10.1038/s41396-020-00812-x
Hartmann A, Schmid M, Tuinen DV, Berg G. Plant-driven selection of microbes. Plant Soil. 2009;321(1–2):235–57.
doi: 10.1007/s11104-008-9814-y
Marasco R, Mosqueira MJ, Fusi M, Ramond JB, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6(1):215.
pubmed: 30514367
pmcid: 6280439
doi: 10.1186/s40168-018-0597-y
Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FEZ, Achouak W, et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009;3(11):1243.
pubmed: 19554039
doi: 10.1038/ismej.2009.68
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome. Trends Plant Sci. 2018;23(1):25–41.
pubmed: 29050989
doi: 10.1016/j.tplants.2017.09.003
Zwetsloot MJ, Kessler A, Bauerle TL. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 2018;218(2):530–41.
pubmed: 29473651
doi: 10.1111/nph.15041
Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, Leson L, et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A. 2019;116(31):15735–44.
pubmed: 31311863
pmcid: 6681745
doi: 10.1073/pnas.1818604116
Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3(4):470–80.
pubmed: 29556109
doi: 10.1038/s41564-018-0129-3
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants. 2021;7(4):481–99.
pubmed: 33833418
doi: 10.1038/s41477-021-00897-y
Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, et al. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A. 2005;102(48):17454–9.
pubmed: 16301542
pmcid: 1297666
doi: 10.1073/pnas.0506407102
Micallef SA, Shiaris MP, Colón-Carmona A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot. 2009;60(6):1729–42.
pubmed: 19342429
pmcid: 2671628
doi: 10.1093/jxb/erp053
Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008;2(12):1221–30.
pubmed: 18754043
doi: 10.1038/ismej.2008.80
de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 2019;224(1):132–45.
pubmed: 31218693
pmcid: 6771481
doi: 10.1111/nph.16001
Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A. 2018;115(22):E5213–22.
pubmed: 29686086
pmcid: 5984513
doi: 10.1073/pnas.1722335115
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome. 2019;7(1):59.
pubmed: 30975184
pmcid: 6460791
doi: 10.1186/s40168-019-0677-7
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome. 2021;9(1):103.
pubmed: 33962687
pmcid: 8106187
doi: 10.1186/s40168-021-01049-2
Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome. 2018;6(1):231.
pubmed: 30587246
pmcid: 6307273
doi: 10.1186/s40168-018-0615-0
Yang K, Fu R, Feng H, Jiang G, Finkel O, Sun T, et al. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Mol Plant. 2023;16(9):1379–95.
pubmed: 37563832
doi: 10.1016/j.molp.2023.08.004
Alahmad A, Harir M, Fochesato S, Tulumello J, Walker A, Barakat M, et al. Unraveling the interplay between root exudates, microbiota, and rhizosheath formation in pearl millet. Microbiome. 2024;12(1):1.
pubmed: 38167150
pmcid: 10763007
doi: 10.1186/s40168-023-01727-3
Wan ET. Symbiosis between rhizobia and legumes. In: ecology and evolution of rhizobia. Singapore: Springer; 2019. p. 3–19.
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 2020;32(1):15–41.
pubmed: 31649123
doi: 10.1105/tpc.19.00279
Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signaling pathways and mediate plant defense responses involved in PAMP-triggered immunity. Environ Microbiol. 2015;17(4):1166–88.
pubmed: 24934960
doi: 10.1111/1462-2920.12538
Andrić S, Rigolet A, Argüelles Arias A, Steels S, Hoff G, Balleux G, et al. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. ISME J. 2023;17(2):263–75.
pubmed: 36357782
doi: 10.1038/s41396-022-01337-1
Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Islam SU, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J Appl Microbiol. 2022;133(5):2717–41.
pubmed: 36017561
doi: 10.1111/jam.15796
Zhang J, Liu YX, Zhang N, Hu B, Jin T, Jin T, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37(6):676–84.
pubmed: 31036930
doi: 10.1038/s41587-019-0104-4
Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL, et al. A single bacterial genus maintains root growth in a complex microbiome. Nature. 2020;587(7832):103–8.
pubmed: 32999461
pmcid: 10329457
doi: 10.1038/s41586-020-2778-7
Salas-González I, Reyt G, Flis P, Custódio V, Custódio V, Bakhoum N, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science. 2021;371(6525):eabd0695.
pubmed: 33214288
doi: 10.1126/science.abd0695
Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 2014;8(8):1577–87.
pubmed: 24553468
pmcid: 4817605
doi: 10.1038/ismej.2014.17
Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci U S A. 2016;113(49):E7996-8005.
pubmed: 27864511
pmcid: 5150415
doi: 10.1073/pnas.1616564113
Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112(8):E911–20.
pubmed: 25605935
pmcid: 4345613
doi: 10.1073/pnas.1414592112
Wang HW, Zhang B, Hao YJ, Huang J, Huang J, Liao Y, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J. 2007;52(4):716–29.
pubmed: 17877700
doi: 10.1111/j.1365-313X.2007.03268.x
Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, et al. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. Plant Biotechnol J. 2022;20(12):2406–17.
pubmed: 36056567
pmcid: 9674310
doi: 10.1111/pbi.13922
Wang Y, Wang D, Shi P, Omasa K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods. 2014;10(1): 36.
pubmed: 25411579
pmcid: 4236477
doi: 10.1186/1746-4811-10-36
Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, et al. Targeted knockout of BnTT2 homologues for Yellow-Seeded Brassica napus with reduced flavonoids and improved fatty acid composition. J Agric Food Chem. 2020;68(20):5676–90.
pubmed: 32394708
doi: 10.1021/acs.jafc.0c01126
Gholami A, De Geyter N, Pollier J, Goormachtig S, Goossens A. Natural product biosynthesis in Medicago species. Nat Prod Rep. 2014;31(3):356–80.
pubmed: 24481477
doi: 10.1039/c3np70104b
Andre C, Froehlich JE, Moll MR, Benning C. A Heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell. 2007;19(6):2006–22.
pubmed: 17557808
pmcid: 1955724
doi: 10.1105/tpc.106.048629
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants. 2019;5(9):924–32.
pubmed: 31506641
doi: 10.1038/s41477-019-0502-0
Martin RE, Postiglione AE, Muday GK. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. Curr Opin Plant Biol. 2022;69: 102293.
pubmed: 36099672
pmcid: 10475289
doi: 10.1016/j.pbi.2022.102293
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. Microbiome. 2018;6(1):78.
pubmed: 29695294
pmcid: 5922317
doi: 10.1186/s40168-018-0457-9
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206(4):1196–206.
pubmed: 25655016
doi: 10.1111/nph.13312
Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8(4):790–803.
pubmed: 24196324
doi: 10.1038/ismej.2013.196
Favela A, Bohn MO, Kent AD. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME J. 2021;15(8):2454–64.
pubmed: 33692487
pmcid: 8319409
doi: 10.1038/s41396-021-00923-z
Liu A, Ku YS, Contador CA, Lam HM. The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Front Genet. 2020;11: 583954.
pubmed: 33193716
pmcid: 7554533
doi: 10.3389/fgene.2020.583954
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. 2019;364(6440):eaau6389.
pubmed: 31073042
doi: 10.1126/science.aau6389
Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci U S A. 2019;116(25):12558–65.
pubmed: 31152139
pmcid: 6589675
doi: 10.1073/pnas.1820691116
Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe. 2020;28(6):825-37.e6.
pubmed: 33027611
pmcid: 7738756
doi: 10.1016/j.chom.2020.09.006
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, et al. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. Biotechnol Biofuels Bioprod. 2022;15(1):92.
pubmed: 36076247
pmcid: 9461130
doi: 10.1186/s13068-022-02191-1
Li C, Cao P, Du C, Zhang X, Bing H, Bing H, et al. Massilia rhizosphaerae sp. nov., a rice-associated rhizobacterium with antibacterial activity against Ralstonia solanacearum. Int J Syst Evol Microbiol. 2021;71(9).
Raths R, Peta V, Bücking H. Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol. 2020;70(6):3912–20.
pubmed: 32511088
doi: 10.1099/ijsem.0.004266
Huq MA, Ma J, Srinivasan S, Parvez MAK, Parvez MAK, Naserkheil M, et al. Massilia agrisoli sp. nov., isolated from rhizospheric soil of banana. Int J Syst Evol Microbiol. 2023;73(5).
Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One. 2012;7(7):e40117.
pubmed: 22808103
pmcid: 3394795
doi: 10.1371/journal.pone.0040117
Tkacz A, Cheema J, Chandra G, Grant A, Poole PS. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015;9(11):2349–59.
pubmed: 25909975
pmcid: 4611498
doi: 10.1038/ismej.2015.41
Du C, Li C, Cao P, Li T, Li T, Wang X, et al. Massilia cellulosiltytica sp. nov., a novel cellulose-degrading bacterium isolated from rhizosphere soil of rice (Oryza sativa L.) and its whole genome analysis. Antonie van Leeuwenhoek. 2021;114(10):1529–40.
pubmed: 34324104
doi: 10.1007/s10482-021-01618-3
Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, et al. Characterisation of waterborne psychrophilic Massilia isolates with violacein production and description of Massilia antarctica sp. nov. Microorganisms. 2022;10(4):704.
pubmed: 35456753
pmcid: 9028926
doi: 10.3390/microorganisms10040704