Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2.
Animals
COVID-19
/ prevention & control
Chlorocebus aethiops
/ virology
Humans
Hydroxychloroquine
/ pharmacology
SARS-CoV-2
/ drug effects
Serine Endopeptidases
/ drug effects
Spike Glycoprotein, Coronavirus
/ drug effects
Vero Cells
/ virology
Virus Internalization
/ drug effects
COVID-19 Drug Treatment
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
19
07
2020
accepted:
03
12
2020
revised:
29
01
2021
pubmed:
20
1
2021
medline:
18
2
2021
entrez:
19
1
2021
Statut:
epublish
Résumé
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.
Identifiants
pubmed: 33465165
doi: 10.1371/journal.ppat.1009212
pii: PPATHOGENS-D-20-01563
pmc: PMC7845965
doi:
Substances chimiques
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Hydroxychloroquine
4QWG6N8QKH
Serine Endopeptidases
EC 3.4.21.-
TMPRSS2 protein, human
EC 3.4.21.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009212Subventions
Organisme : NIAID NIH HHS
ID : R01 AI129868
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nat Commun. 2020 Nov 26;11(1):6013
pubmed: 33243994
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(2):215-219
pubmed: 32391667
N Engl J Med. 2020 Aug 6;383(6):517-525
pubmed: 32492293
Cell Discov. 2020 Mar 18;6:16
pubmed: 32194981
Nature. 2020 May;581(7807):221-224
pubmed: 32225175
J Virol. 2010 Dec;84(24):12658-64
pubmed: 20926566
Nat Struct Mol Biol. 2020 Aug;27(8):763-767
pubmed: 32647346
J Virol. 2013 Dec;87(23):12552-61
pubmed: 24027332
Int J Antimicrob Agents. 2020 Jul;56(1):105949
pubmed: 32205204
JAMA. 2020 Dec 1;324(21):2165-2176
pubmed: 33165621
Cell Res. 2020 Mar;30(3):269-271
pubmed: 32020029
Am J Respir Crit Care Med. 2020 Sep 1;202(5):756-759
pubmed: 32663409
Clin Infect Dis. 2020 Jul 28;71(15):732-739
pubmed: 32150618
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
J Virol. 2006 Oct;80(19):9896-8
pubmed: 16973594
Nature. 2003 Nov 27;426(6965):450-4
pubmed: 14647384
Nat Nanotechnol. 2020 Apr;15(4):247-249
pubmed: 32203437
Cell. 2020 May 28;181(5):1016-1035.e19
pubmed: 32413319
Intensive Care Med. 2020 Apr;46(4):586-590
pubmed: 32125455
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6
pubmed: 19321428
Br J Surg. 2020 Jun;107(7):785-787
pubmed: 32191340
J Virol. 2011 May;85(9):4122-34
pubmed: 21325420
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81
pubmed: 16081529
Antiviral Res. 2015 Apr;116:76-84
pubmed: 25666761
Biochem Biophys Res Commun. 2020 May 21;526(1):135-140
pubmed: 32199615
Virol J. 2005 Aug 22;2:69
pubmed: 16115318
PLoS One. 2012;7(4):e35876
pubmed: 22558251
Antiviral Res. 2020 Apr;176:104742
pubmed: 32057769
N Engl J Med. 2020 Jun 18;382(25):2411-2418
pubmed: 32379955
J Biomol Struct Dyn. 2021 May;39(8):3025-3033
pubmed: 32274964
Nat Commun. 2020 Mar 27;11(1):1620
pubmed: 32221306
Front Med. 2020 Apr;14(2):185-192
pubmed: 32170560
JAMA. 2020 May 12;323(18):1824-1836
pubmed: 32282022
Virology. 2018 Apr;517:9-15
pubmed: 29217279
Biochem Biophys Res Commun. 2004 Oct 8;323(1):264-8
pubmed: 15351731
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9
pubmed: 25288733
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Lancet Infect Dis. 2003 Nov;3(11):722-7
pubmed: 14592603
Nat Med. 2020 May;26(5):681-687
pubmed: 32327758
J Virol. 2004 Oct;78(20):11429-33
pubmed: 15452268
Lancet Infect Dis. 2006 Feb;6(2):67-9
pubmed: 16439323