Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways.


Journal

Orphanet journal of rare diseases
ISSN: 1750-1172
Titre abrégé: Orphanet J Rare Dis
Pays: England
ID NLM: 101266602

Informations de publication

Date de publication:
21 01 2021
Historique:
received: 02 11 2020
accepted: 06 01 2021
entrez: 22 1 2021
pubmed: 23 1 2021
medline: 22 6 2021
Statut: epublish

Résumé

Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1 A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1 Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.

Sections du résumé

BACKGROUND
Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1
RESULTS
A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1
CONCLUSIONS
Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.

Identifiants

pubmed: 33478506
doi: 10.1186/s13023-021-01679-7
pii: 10.1186/s13023-021-01679-7
pmc: PMC7818904
doi:

Substances chimiques

Transient Receptor Potential Channels 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

39

Références

J Neurochem. 1998 Jan;70(1):242-51
pubmed: 9422368
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Annu Rev Immunol. 2014;32:433-59
pubmed: 24499275
Am J Med Genet. 1991 Dec 1;41(3):313-8
pubmed: 1789285
J Neuroinflammation. 2016 May 12;13(1):104
pubmed: 27175482
Proteomics Clin Appl. 2011 Jun;5(5-6):334-42
pubmed: 21591266
J Lipid Res. 2011 Mar;52(3):419-34
pubmed: 21062955
Biochem Biophys Res Commun. 2004 Oct 1;322(4):1384-91
pubmed: 15336987
Biochim Biophys Acta. 2008 Apr;1782(4):250-8
pubmed: 18258208
Hum Mol Genet. 2018 Aug 1;27(15):2725-2738
pubmed: 29771310
J Exp Med. 2008 Jun 9;205(6):1477-90
pubmed: 18504305
Science. 2015 Jan 23;347(6220):1260419
pubmed: 25613900
Cell. 2017 Jun 15;169(7):1276-1290.e17
pubmed: 28602351
Hum Mol Genet. 2000 Oct 12;9(17):2471-8
pubmed: 11030752
Am J Hum Genet. 2007 Nov;81(5):1070-83
pubmed: 17924347
Front Neurosci. 2018 Jun 18;12:397
pubmed: 29967574
Traffic. 2006 Oct;7(10):1388-98
pubmed: 16978393
Neurobiol Aging. 2014 Jul;35(7):1632-42
pubmed: 24612673
Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):793-805
pubmed: 26713677
J Neuroinflammation. 2020 Sep 7;17(1):265
pubmed: 32892753
J Pharmacol Exp Ther. 2016 Aug;358(2):254-61
pubmed: 27307499
J Cell Sci. 2016 Jul 1;129(13):2475-81
pubmed: 27252382
Annu Rev Cell Dev Biol. 2011;27:107-32
pubmed: 21801009
J Neuropathol Exp Neurol. 2009 Feb;68(2):125-35
pubmed: 19151629
Proteomics. 2014 May;14(9):1006-0
pubmed: 24678027
Chin Med J (Engl). 2017 Nov 5;130(21):2616-2623
pubmed: 29067960
Neurology. 1998 Aug;51(2):565-9
pubmed: 9710036
Mol Genet Metab. 2014 Feb;111(2):147-51
pubmed: 24332805
Nat Commun. 2012 Mar 13;3:731
pubmed: 22415822
Int J Radiat Biol. 2018 Apr;94(4):315-326
pubmed: 29424599
J Biol Chem. 2012 Mar 9;287(11):8082-91
pubmed: 22262857
OMICS. 2016 Mar;20(3):139-51
pubmed: 26983021
Biochem J. 2015 Sep 15;470(3):331-42
pubmed: 26195823
Handb Exp Pharmacol. 2014;222:631-45
pubmed: 24756723
Neurobiol Dis. 2010 Nov;40(2):370-7
pubmed: 20600908
Cell. 2010 Feb 5;140(3):313-26
pubmed: 20144757
Semin Cell Dev Biol. 2010 Sep;21(7):691-8
pubmed: 20188203
Oncol Lett. 2014 Aug;8(2):939-947
pubmed: 25009667
J Neuroinflammation. 2014 Jun 12;11:105
pubmed: 24924222
Dis Model Mech. 2020 Jul 30;13(7):
pubmed: 32586947
J Neuroinflammation. 2019 Dec 28;16(1):276
pubmed: 31883529
Elife. 2016 Oct 27;5:
pubmed: 27787197
J Neurol Sci. 1993 Aug;118(1):29-33
pubmed: 8229048
J Proteome Res. 2017 Oct 6;16(10):3787-3804
pubmed: 28792770
Neurology. 2002 Aug 13;59(3):306-13
pubmed: 12182165
J Neuroimmunol. 2001 Oct 1;119(2):327-32
pubmed: 11585636
Curr Biol. 2012 Sep 11;22(17):1616-21
pubmed: 22863314
J Neurochem. 1998 Oct;71(4):1643-50
pubmed: 9751198
Hum Mol Genet. 2008 Sep 1;17(17):2723-37
pubmed: 18550655
Science. 2018 May 18;360(6390):751-758
pubmed: 29700228
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
J Proteome Res. 2019 Mar 1;18(3):1441-1445
pubmed: 30761899
Dis Model Mech. 2015 Dec;8(12):1591-601
pubmed: 26398942
Mol Brain. 2019 Mar 26;12(1):24
pubmed: 30914059
Mol Genet Metab. 2011 Nov;104(3):206-13
pubmed: 21763169
Science. 2014 Feb 14;343(6172):776-9
pubmed: 24531970
BMC Bioinformatics. 2019 Mar 25;20(1):154
pubmed: 30909881
Physiology (Bethesda). 2011 Feb;26(1):14-22
pubmed: 21357899
Gastroenterology. 2011 Mar;140(3):857-67
pubmed: 21111738
Pediatr Res. 2009 Jun;65(6):686-90
pubmed: 19247216
Autophagy. 2007 May-Jun;3(3):259-62
pubmed: 17329960
Sci Rep. 2019 Mar 6;9(1):3716
pubmed: 30842511
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Nat Commun. 2019 Dec 10;10(1):5630
pubmed: 31822666
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6373-8
pubmed: 9600972
Acta Neuropathol Commun. 2014 Sep 09;2:133
pubmed: 25200117
Neuropsychiatr Dis Treat. 2015 Jul 16;11:1723-37
pubmed: 26213471
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
J Neurochem. 2020 Aug 3;:
pubmed: 32743826
Neurol Res. 2000 Jun;22(4):330-6
pubmed: 10874678
Autophagy. 2018;14(1):38-52
pubmed: 29460684
J Neurochem. 2019 Mar;148(5):669-689
pubmed: 29770442
J Biol Chem. 2006 Dec 22;281(51):39041-50
pubmed: 17056595
Adv Exp Med Biol. 2011;704:209-19
pubmed: 21290297

Auteurs

Ayelet Vardi (A)

Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.

Amir Pri-Or (A)

The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel.

Noa Wigoda (N)

The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel.

Yulia Grishchuk (Y)

Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA.

Anthony H Futerman (AH)

Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel. tony.futerman@weizmann.ac.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH