Genetic characterization of highly pathogenic avian Influenza H5Nx clade 2.3.4.4b reveals independent introductions in nigeria.


Journal

Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538

Informations de publication

Date de publication:
Mar 2022
Historique:
revised: 26 12 2020
received: 07 10 2020
accepted: 17 01 2021
pubmed: 23 1 2021
medline: 1 4 2022
entrez: 22 1 2021
Statut: ppublish

Résumé

Among recurrent sanitary emergencies able to spread rapidly worldwide, avian influenza is one of the main constraints for animal health and food security. In West Africa, Nigeria has been experiencing repeated outbreaks of different strains of avian influenza virus (AIV) since 2006 and is also recognized as a hot spot in the region for the introduction of emerging strains by migratory wild birds. Here, we generated complete genomes of 20 highly pathogenic avian influenza (HPAI) H5N8 viruses collected during active surveillance in Nigerian live bird markets (LBM) and from outbreaks reported in the country between 2016 and 2019. Phylogenetic analysis reveals that the Nigerian viruses cluster into four separate genetic groups within HPAI H5 clade 2.3.4.4b. The first group includes 2016-2017 Nigerian viruses with high genetic similarity to H5N8 viruses detected in Central African countries, while the second includes Nigerian viruses collected both in LBM and poultry farms (2018-2019), as well as in Cameroon, Egypt and Siberia. A natural reassortant strain identified in 2019 represents the third group: H5N8 viruses with the same gene constellation were identified in 2018 in South Africa. Finally, the fourth introduction represents the first detection in the African continent of the H5N6 subtype, which is related to European viruses. Bayesian phylogeographic analyses confirmed that the four introductions originated from different sources and provide evidence of the virus spread within Nigeria, as well as diffusion beyond its borders. The multiple epidemiological links between Nigeria, Central and Southern African countries highlight the need for harmonized and coordinated surveillance system to control AIV impact. Improved surveillance at the Wetlands, LBMs and early warning of outbreaks are crucial for prevention and control of AIV, which can be potentially zoonotic and be a threat to human health.

Identifiants

pubmed: 33480188
doi: 10.1111/tbed.14000
doi:

Banques de données

GENBANK
['MN759473', 'MN759624']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

423-433

Subventions

Organisme : Italian Ministry of Health
ID : IZSVe 10/19 RC
Organisme : Federal Ministry of Agriculture and Rural Development, Nigeria

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Abolnik, C., Pieterse, R., Peyrot, B. M., Choma, P., Phiri, T. P., Ebersohn, K., & Laleye, A. T. (2019). The incursion and spread of highly pathogenic avian influenza H5N8 clade 2.3. 4.4 within South Africa. Avian Diseases, 63(1s), 149-156.
Beerens, N., Heutink, R., Pritz-Verschuren, S., Germeraad, E. A., Bergervoet, S. A., Harders, F.,Bossers, A., & Koch, G. (2019). Genetic relationship between poultry and wild bird viruses during the highly pathogenic avian influenza H5N6 epidemic in the Netherlands, 2017-2018. Transboundary and Emerging Diseases, 66(3), 1370-1378.
Bielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics [Internet]. Oct 15 [cited 2019 Feb 6], 27(20):2910-2912. https://academic.oup.com/bioinformatics/article-lookup/. https://doi.org/10.1093/bioinformatics/btr481
Bodewes, R., & Kuiken, T. (2018). Changing role of wild birds in the epidemiology of avian influenza A viruses. Advances in Virus Research, 100, 279-307.Academic Press.
Breiman, R. F., Nasidi, A., Katz, M. A., Njenga, M. K., & Vertefeuille, J. (2007). Preparedness for highly pathogenic avian influenza pandemic in Africa. Emerging Infectious Diseases, 13(10), 1453.
Depristo, M. A., Banks, E., Poplin, R. E., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498 [cited 2018 Aug 22]. http://www.nature.com/authors/editorial_policies/license.html#terms
Donis, R., Smith, G., Brown, I., Capua, I., Cattoli, G., Chen, H., Cox, N., Davis, C., Fouchier, R., Garten, R., & Guan, Y. (2009). Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: Divergence of clade 2.2 viruses. Influenza and Other Respiratory Viruses, 3(2), 59-62.
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-7-214
Fasina, F. O., Bisschop, S. P., Joannis, T. M., Lombin, L. H., & Abolnik, C. (2009). Molecular characterization and epidemiology of the highly pathogenic avian influenza H5N1 in Nigeria. Epidemiology & Infection, 137(4), 456-463.
Fusaro, A., Nelson, M. I., Joannis, T., Bertolotti, L., Monne, I., Salviato, A., Olaleye, O., Shittu, I., Sulaiman, L., Lombin, L. H., Capua, I., Holmes, E. C., & Cattoli, G. (2010). Evolutionary dynamics of multiple sublineages of H5N1 influenza viruses in Nigeria from 2006 to 2008. Journal of Virology, 84(7), 3239-3247.
Fusaro, A., Zecchin, B., Vrancken, B., Abolnik, C., Ademun, A. R., Akpeli, Y. P., Alassane, A., Awuni, J. A., Couacy-Hymann, E., Coulibaly, M., & Go-Maro, E. (2019). Global origins of African highly pathogenic avian influenza H5Nx viruses and intracontinental spread. International Journal of Infectious Diseases, 79, 9-10.
Fusaro, A., Zecchin, B., Vrancken, B., Abolnik, C., Ademun, R., Alassane, A., Arafa, A., Awuni, J. A., Couacy-Hymann, E., Coulibaly, M. B., & Gaidet, N. (2019). Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nature Communications, 10(1), 1-13.
Gabriel, G., Abram, M., Keiner, B., Wagner, R., Klenk, H. D., & Stech, J. (2007). Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. Journal of Virology, 81(17), 9601-9604. https://doi.org/10.1128/JVI.00666-07
Gentles, L. E., Wan, H., Eichelberger, M., & Bloom, J. D. (2020). Antibody neutralization of an influenza virus that uses neuraminidase for receptor binding. Viruses, 12(6), 597
Globig, A., Staubach, C., Sauter-Louis, C., Dietze, K., Homeier-Bachmann, T., Probst, C., Gethmann, J., Depner, K. R., Grund, C., Harder, T. C., Starick, E., Pohlmann, A., Höper, D., Beer, M., Mettenleiter, T. C., & Conraths, F. J. (2018). Highly pathogenic avian influenza H5N8 clade 2.3.4.4b in Germany in 2016/2017. Frontiers in Veterinary Science, 4, 240. https://doi.org/10.3389/fvets.2017.00240
Joannis, T., Lombin, L. H., De Benedictis, P., Cattoli, G., & Capua, I. (2006). Confirmation of H5N1 avian influenza in Africa. Veterinary Record, 158(9), 309-310.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780.
Laleye, A., Joannis, T., Shittu, I., Meseko, C., Zamperin, G., Milani, A., & Abolnik, C. (2018). A two-year monitoring period of the genetic properties of clade 2.3. 2.1 c H5N1 viruses in Nigeria reveals the emergence and co-circulation of distinct genotypes. Infection, Genetics and Evolution, 57, 98-105.
Lee, D. H., Bertran, K., Kwon, J. H., & Swayne, D. E. (2017). Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3. 4.4. Journal of Veterinary Science, 18(S1), 269-280. https://doi.org/10.4142/jvs.2017.18.S1.269
Lee, D. H., Criado, M. F., & Swayne, D. E. (2020). Pathobiological origins and evolutionary history of highly pathogenic avian influenza viruses. Cold Spring Harbor Perspectives in Medicine, Jan 21, a038679.
Lemey, P., Rambaut, A., Drummond, A. J., & Suchard, M. A. (2009). Bayesian phylogeography finds its roots. PLoS Computational Biology, 5(9), e1000520.
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics [Internet], 26(5):589-595. http://bio-bwa.sourceforge.net
Mckenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303. http://www.genome.org/cgi/. https://doi.org/10.1101/gr.107524.110
Minin, V. N., Bloomquist, E. W., & Suchard, M. A. (2008). Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Molecular Biology and Evolution, 25(7), 1459-1471.
Monne, I., Meseko, C., Joannis, T., Shittu, I., Ahmed, M., Tassoni, L., Fusaro, A., & Cattoli, G. (2015). Highly pathogenic avian influenza A (H5N1) virus in poultry, Nigeria, 2015. Emerging Infectious Diseases, 21(7), 1275-1277.
Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274. http://www.cibiv.at/software/
OIE (World Organisation for Animal Health). (2016a). Immediate notifications and follow-up reports of highly pathogenic avian influenza (types H5 and H7).
OIE. (2016b). World organisation for animal health. https://www.oie.int/animal-oie.health-oie.i
OIE. (2017). Immediate notifications and follow-up reports of highly pathogenic avian influenza (types H5 and. H7).
OIE. (2019). Immediate notifications and follow-up reports of highly pathogenic avian influenza (types H5 and H7).
Shittu, I., Bianco, A., Gado, D., Mkpuma, N., Sulaiman, L., Laleye, A. Gobbo, F., Bortolami, A., Bonfante, F., Vakuru, C., Meseko, C., Fusaro, A., Shamaki, D., Alabi, O., Terregino, C., & Joannis, T. (2020). First detection of highly pathogenic H5N6 avian influenza virus on the African continent. Emerging Microbes & Infections, 9(1), 1-14.
Shittu, I., Meseko, C. A., Gado, D. A., Olawuyi, A. K., Chinyere, C. N., Anefu, E., Solomon, P., Okewole, P. A., Shamaki, D., & Joannis, T. M. (2017). Highly pathogenic avian influenza (H5N1) in Nigeria in 2015: Evidence of widespread circulation of WA2 clade 2.3. 2.1 c. Archives of Virology, 162(3), 841-847.
Sims, L., Harder, T. C., Brown, I., Gaidet, N., Belot, G., von Dobschuetz, S., Kamata, A., Kivaria, F. M., Palamara, E., Bruni, M., & Dauphin, G. (2017). Highly pathogenic H5 avian influenza in 2016 and early 2017-observations and future perspectives. Food and Agriculture Organization of the United Nations Emergency Prevention SystemRomeFOCUS ON, No.11. Nov 2017
Smith, G. J. D., & Donis, R. O. (2014). Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza and Other Respiratory Viruses, 8(3), 384-388.
Świętoń, E., Fusaro, A., Shittu, I., Niemczuk, K., Zecchin, B., Joannis, T., & Terregino, C. (2020). Sub-Saharan Africa and Eurasia ancestry of reassortant highly pathogenic Avian Influenza A (H5N8) Virus, Europe, December 2019. Emerging Infectious Diseases, 26, 7, 1557.
Tassoni, L., Fusaro, A., Milani, A., Lemey, P., Awuni, J. A., Sedor, V. B., Dogbey, O., Commey, A. N. O., Meseko, C., Joannis, T., & Minoungou, G. L. (2016). Genetically different highly pathogenic avian influenza A (H5N1) viruses in West Africa, 2015. Emerging Infectious Diseases, 22(12), 2132.
Thi Hoang, D., Chernomor, O., von Haeseler, A., Quang Minh, B., Sy Vinh, L., & Rosenberg, M. S. (2017). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518-522. http://www.iqtree.org
World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5N1 Evolution Working Group. (2012). Continued evolution of highly pathogenic avian influenza A (H5N1): Updated nomenclature. Influenza and Other Respiratory Viruses, 6(1), 1-5.
Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H., Wong, C. H.., Khor, C. C., Petric, R., Hibberd, M. L., & Nagarajan, N. (2012). LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Research, 40(22), 11189-11201. https://academic.oup.com/nar/article/40/22/11189/1152727
WHO, OIE, FAO H5N1 Evolution Working Group. (2014). Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza and Other Respiratory Viruses, 8(3), 384-388.

Auteurs

Agnes Tinuke Laleye (AT)

National Veterinary Research Institute, Vom, Nigeria.

Alice Bianco (A)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Ismaila Shittu (I)

National Veterinary Research Institute, Vom, Nigeria.

Lanre Sulaiman (L)

National Veterinary Research Institute, Vom, Nigeria.

Alice Fusaro (A)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Bitrus Inuwa (B)

National Veterinary Research Institute, Vom, Nigeria.

Joshua Oyetunde (J)

National Veterinary Research Institute, Vom, Nigeria.

Bianca Zecchin (B)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Judith Bakam (J)

National Veterinary Research Institute, Vom, Nigeria.

Ambra Pastori (A)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Kayode Olawuyi (K)

National Veterinary Research Institute, Vom, Nigeria.

Alessia Schivo (A)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Clement Meseko (C)

National Veterinary Research Institute, Vom, Nigeria.

Columba Vakuru (C)

Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria.

Andrea Fortin (A)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Isabella Monne (I)

Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

Tony Joannis (T)

National Veterinary Research Institute, Vom, Nigeria.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH