Task- and Rest-based Functional Brain Connectivity in Food-related Reward Processes among Healthy Adolescents.


Journal

Neuroscience
ISSN: 1873-7544
Titre abrégé: Neuroscience
Pays: United States
ID NLM: 7605074

Informations de publication

Date de publication:
01 03 2021
Historique:
received: 09 05 2020
revised: 11 01 2021
accepted: 11 01 2021
pubmed: 24 1 2021
medline: 15 5 2021
entrez: 23 1 2021
Statut: ppublish

Résumé

It is known that the nucleus accumbens, orbitofrontal cortex and insula play a role in food-related reward processes. Although their interconnectedness would be an ideal topic for understanding food intake mechanisms, it nevertheless remains unclear especially in adolescent. Therefore, this study aims to investigate the effect of hunger on functional connectivity in healthy adolescents using task- and rest-based imaging. Fifteen participants underwent two MRI sessions, pre-lunch (hunger) and post-lunch (satiety), including food cue task and resting-state. During task- and rest-based imaging, functional connectivity was greater when hungry as opposed to satiated between the right posterior insula/nucleus accumbens, suggesting involvement of salient interoceptive stimuli signals. During task-based imaging, an increase was observed in functional connectivity when hungry as opposed to satiated between the medial and lateral orbitofrontal cortex which contributes to the perception of food deprivation as a frustration. A decrease was identified when hungry as opposed to satiated in functional connectivity in the right anterior orbitofrontal/accumbens and posterior insula/medial orbitofrontal cortices reflecting suppression of the affective and sensorial information. Conversely, functional connectivity was increased during aversive stimuli between the right medial orbitofrontal cortex and right posterior insula when hungry as opposed to satiated. This suggests that the value of valence could occur in the shift in connectivity between these two regions. In addition, during rest-based imaging, a left-sided lateralization was reported (accumbens/lateral orbitofrontal and accumbens/posterior insula) when hungry as opposed to satiated which may represent changes in internal state due to focus on the benefit of an upcoming meal.

Identifiants

pubmed: 33484819
pii: S0306-4522(21)00023-3
doi: 10.1016/j.neuroscience.2021.01.016
pii:
doi:

Banques de données

ClinicalTrials.gov
['NCT02868619']

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

196-205

Informations de copyright

Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

Auteurs

Céline Charroud (C)

Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France. Electronic address: celine.charroud@hotmail.fr.

Gaëtan Poulen (G)

Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France; Unité de pathologie cérébrale résistante, Department of Neurosurgery, Montpellier University Hospital Center, Montpellier, France.

Emily Sanrey (E)

Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France; Unité de pathologie cérébrale résistante, Department of Neurosurgery, Montpellier University Hospital Center, Montpellier, France.

Nicolas Menjot de Champfleur (N)

Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France.

Jérémy Deverdun (J)

Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France.

Philippe Coubes (P)

Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France; Unité de pathologie cérébrale résistante, Department of Neurosurgery, Montpellier University Hospital Center, Montpellier, France.

Emmanuelle Le Bars (E)

Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH