Protein intrinsic viscosity determination with the Viscosizer TD instrument: reaching beyond the initially expected applications.

Bovine serum albumin (BSA) Huggins’ constant Intrinsic viscosity Kraemers’ constant Taylor dispersion U-tube Viscosizer TD

Journal

European biophysics journal : EBJ
ISSN: 1432-1017
Titre abrégé: Eur Biophys J
Pays: Germany
ID NLM: 8409413

Informations de publication

Date de publication:
May 2021
Historique:
received: 24 08 2020
accepted: 20 12 2020
revised: 03 12 2020
pubmed: 25 1 2021
medline: 15 12 2021
entrez: 24 1 2021
Statut: ppublish

Résumé

Intrinsic viscosity is a key hydrodynamic parameter to understand molecular structure and hydration, as well as intramolecular interactions. Commercially available instruments measure intrinsic viscosity by recording the macromolecular mobility in a capillary. These instruments monitor Taylor dispersion using an absorbance or fluorescence detector. By design, these instruments behave like U-tube viscometers. To our knowledge, there are no studies to date showing that the Viscosizer TD instrument (Malvern-Panalytical) is able to measure the intrinsic viscosity of macromolecules. In this study, we then performed our assays on the Poly(ethylene oxide) polymer (PEO), used classically as a standard for viscometry measurements and on three model proteins: the bovine serum albumin (BSA), the bevacizumab monoclonal antibody, and the RTX Repeat Domain (RD) of the adenylate cyclase toxin of Bordetella pertussis (CyaA). The presence of P20 in the samples is critical to get reliable results. The data obtained with our in-house protocol show a strong correlation with intrinsic viscosity values obtained using conventional techniques. However, with respect to them, our measurements could be performed at relatively low concentrations, between 2 and 5 mg/ml, using only 7 µL per injection. Altogether, our results show that the Viscosizer TD instrument is able to measure intrinsic viscosities in a straightforward manner. This simple and innovative approach should give a new boost to intrinsic viscosity measurements and should reignite the interest of biophysicists, immunologists, structural biologists and other researchers for this key physicochemical parameter.

Identifiants

pubmed: 33486532
doi: 10.1007/s00249-020-01492-3
pii: 10.1007/s00249-020-01492-3
doi:

Substances chimiques

Polymers 0
Serum Albumin, Bovine 27432CM55Q

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

587-595

Références

Aragon SR (2011) Recent advances in macromolecular hydrodynamic modeling. Methods 54:101–114. https://doi.org/10.1016/j.ymeth.2010.10.005
doi: 10.1016/j.ymeth.2010.10.005 pubmed: 21073955
Arora J, Hickey JM, Majumdar R et al (2015) Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody. MAbs 7:525–539. https://doi.org/10.1080/19420862.2015.1029217
doi: 10.1080/19420862.2015.1029217 pubmed: 25875351 pmcid: 4622866
Bai L, Zheng R, Li W et al (2013) A synthetic approach for water soluble hyperbranched poly(N, N-ethylidenebis(N-2-chloroacetyl acrylamide)) with high degree of branching via atom transfer radical polymerization/self-condensing vinyl polymerization. Chin J Polym Sci 31:1038–1045. https://doi.org/10.1007/s10118-013-1257-0
doi: 10.1007/s10118-013-1257-0
Brookes E, Rocco M (2016) Calculation of Hydrodynamic Parameters: US-SOMO. In: Uchiyama S, Arisaka F, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer Japan, Tokyo, pp 169–193
doi: 10.1007/978-4-431-55985-6_10
Chatterjee A (1965) Intrinsic viscosity measurements of bovine serum albumin at different temperatures. Nature 205:386. https://doi.org/10.1038/205386a0
doi: 10.1038/205386a0 pubmed: 14243416
Chenal A, Guijarro JI, Raynal B et al (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284:1781–1789. https://doi.org/10.1074/jbc.M807312200
doi: 10.1074/jbc.M807312200 pubmed: 19015266
Cilurzo F, Selmin F, Minghetti P et al (2011) Injectability evaluation: an open issue. AAPS PharmSciTech 12:604–609. https://doi.org/10.1208/s12249-011-9625-y
doi: 10.1208/s12249-011-9625-y pubmed: 21553165 pmcid: 3134656
Curvale R, Masuelli M, Padilla AP (2008) Intrinsic viscosity of bovine serum albumin conformers. Int J Biol Macromol 42:133–137. https://doi.org/10.1016/j.ijbiomac.2007.10.007
doi: 10.1016/j.ijbiomac.2007.10.007 pubmed: 18022223
Dutta PK, Hammons K, Willibey B, Haney MA (1991) Analysis of protein denaturation by high-performance continuous differential viscometry. J Chromatogr A 536:113–121. https://doi.org/10.1016/S0021-9673(01)89241-4
doi: 10.1016/S0021-9673(01)89241-4
Einaga Y, Miyaki Y, Fujita H (1979) Intrinsic viscosity of polystyrene. J Poly Sci Phys Ed 17:2103–2109. https://doi.org/10.1002/pol.1979.180171205
doi: 10.1002/pol.1979.180171205
Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Phys (Berlin) 324:371–381. https://doi.org/10.1002/andp.19063240208
doi: 10.1002/andp.19063240208
Garidel P, Kuhn AB, Schäfer LV et al (2017) High-concentration protein formulations: How high is high? Eur J Pharm Biopharm 119:353–360. https://doi.org/10.1016/j.ejpb.2017.06.029
doi: 10.1016/j.ejpb.2017.06.029 pubmed: 28690199
Goodall D (2012) Viscosity measurement apparatus and method. United States Patent Appl US 13:877–978
Hall CG, Abraham GN (1984) Size, shape, and hydration of a self-associating human IgG myeloma protein: axial asymmetry as a contributing factor in serum hyperviscosity. Arch Biochem Biophys 233:330–337. https://doi.org/10.1016/0003-9861(84)90453-3
doi: 10.1016/0003-9861(84)90453-3 pubmed: 6486791
Halling DB, Kenrick SA, Riggs AF, Aldrich RW (2014) Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution. J Gen Physiol 143:231–252. https://doi.org/10.1085/jgp.201311007
doi: 10.1085/jgp.201311007 pubmed: 24420768 pmcid: 4001768
Harding SE (1997) The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol 68:207–262
doi: 10.1016/S0079-6107(97)00027-8
Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. dependence on concentration. J Am Chem Soc 64:2716–2718. https://doi.org/10.1021/ja01263a056
doi: 10.1021/ja01263a056
Jezek J, Rides M, Derham B et al (2011) Viscosity of concentrated therapeutic protein compositions. Adv Drug Deliv Rev 63:1107–1117. https://doi.org/10.1016/j.addr.2011.09.008
doi: 10.1016/j.addr.2011.09.008 pubmed: 22014592
Kraemer EO (1938) Molecular weights of celluloses and cellulose derivates. Ind Eng Chem 30:1200–1203. https://doi.org/10.1021/ie50346a023
doi: 10.1021/ie50346a023
Kranz J, AlAzzam F, Saluja A et al (2013) Techniques for higher-order structure determination. In: Narhi LO (ed) Biophysics for therapeutic protein development. Springer, New York, NY, pp 33–82
doi: 10.1007/978-1-4614-4316-2_3
Kurland CG (1960) Molecular characterization of ribonucleic acid from Escherichia coli ribosomes: I. Isolation and molecular weights. J Mol Biol 2:83–91. https://doi.org/10.1016/S0022-2836(60)80029-0
doi: 10.1016/S0022-2836(60)80029-0
Li X, Lu Y, Adams GG et al (2020) Characterisation of the molecular properties of scleroglucan as an alternative rigid rod molecule to xanthan gum for oropharyngeal dysphagia. Food Hydrocoll 101:105446. https://doi.org/10.1016/j.foodhyd.2019.105446
doi: 10.1016/j.foodhyd.2019.105446 pubmed: 32255886 pmcid: 7015278
Liu J, Nguyen MDH, Andya JD, Shire SJ (2005) Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci 94:1928–1940. https://doi.org/10.1002/jps.20347
doi: 10.1002/jps.20347 pubmed: 16052543
Nič M, Jirát J, Košata B et al (eds) (2009) Mark-Houwink equation, 2.1.0. IUPAC. Research Triagle Park, NC
Nickerson NN, Tosi T, Dessen A et al (2011) Outer membrane targeting of secretin PulD protein relies on disordered domain recognition by a dedicated chaperone. J Biol Chem 286:38833–38843. https://doi.org/10.1074/jbc.M111.279851
doi: 10.1074/jbc.M111.279851 pubmed: 21878629 pmcid: 3234708
Ortega A, Amorós D, García de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898. https://doi.org/10.1016/j.bpj.2011.06.046
doi: 10.1016/j.bpj.2011.06.046 pubmed: 21843480 pmcid: 3175065
Ostwald W, Malss H (1933) Über Viskositätsanomalien sich entmischender systeme I Über strukturviskosität kritischer flüssigkeitsgemische. Kolloid-Zeitschrift 63:61–77. https://doi.org/10.1007/BF01427994
doi: 10.1007/BF01427994
Padrick SB, Deka RK, Chuang JL et al (2010) Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments. Anal Biochem 407:89–103. https://doi.org/10.1016/j.ab.2010.07.017
doi: 10.1016/j.ab.2010.07.017 pubmed: 20667444 pmcid: 3089910
Petrella S, Capton E, Raynal B et al (2019) Overall structures of mycobacterium tuberculosis DNA gyrase reveal the role of a corynebacteriales GyrB-specific insert in ATPase activity. Structure 27:579-589.e5. https://doi.org/10.1016/j.str.2019.01.004
doi: 10.1016/j.str.2019.01.004 pubmed: 30744994
Pindrus MA, Shire SJ, Yadav S, Kalonia DS (2017) Challenges in determining intrinsic viscosity under low ionic strength solution conditions. Pharm Res 34:836–846. https://doi.org/10.1007/s11095-017-2112-8
doi: 10.1007/s11095-017-2112-8 pubmed: 28155072
Raynal BDE, Hardingham TE, Sheehan JK, Thornton DJ (2003) Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. J Biol Chem 278:28703–28710. https://doi.org/10.1074/jbc.M304632200
doi: 10.1074/jbc.M304632200 pubmed: 12756239
Rey F, Ma F, Facal P, Machado ASC (1996) Effect of concentration, pH, and ionic strength on the viscosity of solutions of a soil fulvic acid. Can J Chem 74:295–299. https://doi.org/10.1139/v96-033
doi: 10.1139/v96-033
Sarangapani PS, Hudson SD, Migler KB, Pathak JA (2013) The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology. Biophys J 105:2418–2426. https://doi.org/10.1016/j.bpj.2013.10.012
doi: 10.1016/j.bpj.2013.10.012 pubmed: 24268154 pmcid: 3838757
Schasfoort RBM (2017) Chapter 1 Introduction to Surface Plasmon Resonance. In: Handbook of Surface Plasmon Resonance (2). Royal Society of Chemistry, pp 1–26
Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105. https://doi.org/10.1177/1947601911423031
doi: 10.1177/1947601911423031 pubmed: 22866201 pmcid: 3411125
Singh SM, Bandi S, Jones DNM, Mallela KMG (2017) Effect of Polysorbate 20 and Polysorbate 80 on the higher-order structure of a monoclonal antibody and its fab and Fc fragments probed using 2D nuclear magnetic resonance spectroscopy. J Pharm Sci 106:3486–3498. https://doi.org/10.1016/j.xphs.2017.08.011
doi: 10.1016/j.xphs.2017.08.011 pubmed: 28843351 pmcid: 6178931
Skou S, Gillilan RE, Ando N (2014) Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution. Nat Protoc 9:1727–1739. https://doi.org/10.1038/nprot.2014.116
doi: 10.1038/nprot.2014.116 pubmed: 24967622 pmcid: 4472361
Tomar DS, Kumar S, Singh SK et al (2016) Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development. MAbs 8:216–228. https://doi.org/10.1080/19420862.2015.1128606
doi: 10.1080/19420862.2015.1128606 pubmed: 26736022 pmcid: 5074600
Tsortos A, Papadakis G, Gizeli E (2011) The intrinsic viscosity of linear DNA. Biopolymers 95:824–832. https://doi.org/10.1002/bip.21684
doi: 10.1002/bip.21684 pubmed: 21638275
Ubbelohde L (1936) The suspended level viscometer. J Inst Petro 22:32–41
Weaver L, Yu LP, Rollings JE (1988) Weighted intrinsic viscosity relationships for polysaccharide mixtures in dilute aqueous solutions. J Appl Polym Sci 35:1631–1637. https://doi.org/10.1002/app.1988.070350618
doi: 10.1002/app.1988.070350618
Whitaker N, Xiong J, Pace SE et al (2017) A formulation development approach to identify and select stable ultra–high-concentration monoclonal antibody formulations with reduced viscosities. J Pharm Sci 106:3230–3241. https://doi.org/10.1016/j.xphs.2017.06.017
doi: 10.1016/j.xphs.2017.06.017 pubmed: 28668340
Yang JT (1961) The viscosity of macromolecules in relation to molecular conformation. Adv Protein Chem 16:323–400. https://doi.org/10.1016/S0065-3233(08)60032-7
doi: 10.1016/S0065-3233(08)60032-7 pubmed: 14002447
Zarraga IE, Taing R, Zarzar J et al (2013) High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies. J Pharm Sci 102:2538–2549. https://doi.org/10.1002/jps.23647
doi: 10.1002/jps.23647 pubmed: 23873347
Zhang Z, Liu Y (2017) Recent progresses of understanding the viscosity of concentrated protein solutions. Curr Opin Chem Eng 16:48–55. https://doi.org/10.1016/j.coche.2017.04.001
doi: 10.1016/j.coche.2017.04.001

Auteurs

Sébastien Brûlé (S)

Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, 25 Rue du docteur Roux, Cedex 15, 75724, Paris, France. sebastien.brule@pasteur.fr.

Raffaele Leroux (R)

Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, 25 Rue du docteur Roux, Cedex 15, 75724, Paris, France.

Patrick England (P)

Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, 25 Rue du docteur Roux, Cedex 15, 75724, Paris, France.

Bertrand Raynal (B)

Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, 25 Rue du docteur Roux, Cedex 15, 75724, Paris, France. bertrand.raynal@pasteur.fr.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH