CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
06 2021
Historique:
received: 19 08 2020
accepted: 22 12 2020
revised: 18 12 2020
pubmed: 27 1 2021
medline: 8 7 2021
entrez: 26 1 2021
Statut: ppublish

Résumé

To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19 We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.

Identifiants

pubmed: 33495529
doi: 10.1038/s41436-020-01091-9
pii: S1098-3600(21)05205-9
doi:

Substances chimiques

CDK19 protein, human EC 2.7.11.22
Cyclin-Dependent Kinases EC 2.7.11.22

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1050-1057

Subventions

Organisme : NCATS NIH HHS
ID : UL1 TR002538
Pays : United States

Références

Malumbres, M. Cyclin-dependent kinases. Genome Biol. 15, 122 (2014).
doi: 10.1186/gb4184
Spaeth, J. M., Kim, N. H. & Boyer, T. G. Mediator and human disease. Semin. Cell Dev. Biol. 22, 776–787 (2011).
doi: 10.1016/j.semcdb.2011.07.024
Calpena, E. et al. De novo missense substitutions in the gene encoding CDK8, a regulator of the mediator complex, cause a syndromic developmental disorder. Am. J. Hum. Genet. 104, 709–720 (2019).
doi: 10.1016/j.ajhg.2019.02.006
Nizon, M. et al. Variants in MED12L, encoding a subunit of the mediator kinase module, are responsible for intellectual disability associated with transcriptional defect. Genet. Med. 21, 2713–2722 (2019).
doi: 10.1038/s41436-019-0557-3
Furumoto, T. et al. A kinase subunit of the human mediator complex, CDK8, positively regulates transcriptional activation. Genes Cells 12, 119–132 (2007).
doi: 10.1111/j.1365-2443.2007.01036.x
Dannappel, M. V., Sooraj, D., Loh, J. J. & Firestein, R. Molecular and in vivo functions of the CDK8 and CDK19 kinase modules. Front. Cell. Dev. Biol. 6, 171 (2018).
doi: 10.3389/fcell.2018.00171
Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell. Biol. 16, 155–166 (2015).
doi: 10.1038/nrm3951
Daniels, D. et al. Mutual exclusivity of MED12/MED12L, MED13/13L, and CDK8/19 paralogs revealed within the CDK-Mediator kinase module. J Proteomics Bioinform. S2:004. https://doi.org/10.4172/jpb.S2-004 .
Adegbola, A. et al. Redefining the MED13L syndrome. Eur J Hum. Genet. 23, 1308–1317 (2015).
doi: 10.1038/ejhg.2015.26
Graham, J. M. Jr. & Schwartz, C. E. MED12 related disorders. Am. J. Med. Genet. A. 161A, 2734–2740 (2013).
doi: 10.1002/ajmg.a.36183
Snijders Blok, L. et al. De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder. Hum. Genet. 137, 375–388 (2018).
doi: 10.1007/s00439-018-1887-y
Poot, M. Mutations in mediator complex genes CDK8, MED12, MED13, and MEDL13 mediate overlapping developmental syndromes. Mol. Syndromol. 10, 239–242 (2020).
doi: 10.1159/000502346
Poss, Z. C., Ebmeier, C. C. & Taatjes, D. J. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575–608 (2013).
doi: 10.3109/10409238.2013.840259
Mukhopadhyay, A. et al. CDK19 is disrupted in a female patient with bilateral congenital retinal folds, microcephaly and mild mental retardation. Hum. Genet. 128, 281–291 (2010).
doi: 10.1007/s00439-010-0848-x
Chung, H. L. et al. De novo variants in CDK19 are associated with a syndrome involving intellectual disability and epileptic encephalopathy. Am. J. Hum. Genet. 106, 717–725 (2020).
doi: 10.1016/j.ajhg.2020.04.001
Li, J. et al. VarCards: an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res. 46, D1039–D1048 (2018).
doi: 10.1093/nar/gkx1039
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).
doi: 10.1038/gim.2015.30
Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L. & Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 11, 548 (2010).
doi: 10.1186/1471-2105-11-548
Capriotti, E., Fariselli, P. & Casadio, R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 33, W306–310 (2005).
doi: 10.1093/nar/gki375
Hirose, Y. & Manley, J. L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature. 395, 93–96 (1998).
doi: 10.1038/25786
Hirose, Y., Iwamoto, Y., Sakuraba, K., Yunokuchi, I., Harada, F. & Ohkuma, Y. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II. Biochem. Biophys. Res. Commun. 369, 449–455 (2008).
doi: 10.1016/j.bbrc.2008.02.042
Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).
doi: 10.1002/humu.22844
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536, 285–291 (2016).
doi: 10.1038/nature19057
Niknafs, N. et al. MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures. Hum. Genet. 132, 1235–1243 (2013).
doi: 10.1007/s00439-013-1325-0
Tsutsui, T., Fukasawa, R., Tanaka, A., Hirose, Y. & Ohkuma, Y. Identification of target genes for the CDK subunits of the Mediator complex. Genes Cells 16, 1208–1218 (2011).
doi: 10.1111/j.1365-2443.2011.01565.x
Audetat, K. A., Galbraith, M.D., & Odell, A. T. et al. A kinase-independent role for cyclin-dependent kinase 19 in p53 response. Mol. Cell. Biol. 37, e00626-16 (2017).
Liu, W. et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 31, 3359–3361 (2015).
doi: 10.1093/bioinformatics/btv362

Auteurs

Yuri A Zarate (YA)

Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA. yazarate@uams.edu.

Tomoko Uehara (T)

Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.

Kota Abe (K)

Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Masayuki Oginuma (M)

Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Sora Harako (S)

Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

Shizuka Ishitani (S)

Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Anna-Elina Lehesjoki (AE)

Folkhälsan Research Center and University of Helsinki, Helsinki, Finland.

Tatjana Bierhals (T)

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Katja Kloth (K)

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Nadja Ehmke (N)

Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Denise Horn (D)

Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Manuel Holtgrewe (M)

Charité - Universitätsmedizin Berlin, Berlin, Germany.
Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany.

Katherine Anderson (K)

Department of Pediatrics, University of Vermont Medical Center, Burlington, VT, USA.

David Viskochil (D)

Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.

Courtney L Edgar-Zarate (CL)

Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Maria J Guillen Sacoto (MJG)

GeneDx, Gaithersburg, MD, USA.

Rhonda E Schnur (RE)

GeneDx, Gaithersburg, MD, USA.

Michelle M Morrow (MM)

GeneDx, Gaithersburg, MD, USA.

Amarilis Sanchez-Valle (A)

Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, FL, USA.

John Pappas (J)

NYU Grossman School of Medicine, Dept of Pediatrics, Clinical Genetic Services, New York, NY, USA.

Rachel Rabin (R)

NYU Grossman School of Medicine, Dept of Pediatrics, Clinical Genetic Services, New York, NY, USA.

Mikko Muona (M)

Folkhälsan Research Center and University of Helsinki, Helsinki, Finland.
Blueprint Genetics, Helsinki, Finland.

Anna-Kaisa Anttonen (AK)

Folkhälsan Research Center and University of Helsinki, Helsinki, Finland.
Department of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.

Konrad Platzer (K)

Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.

Johannes Luppe (J)

Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.

Janina Gburek-Augustat (J)

Division of Neuropaediatrics, Hospital for Children and Adolescents, University Leipzig, Leipzig, Germany.

Tadashi Kaname (T)

Department of Genome Medicine, National Center for Child Health and Developemt, Tokyo, Japan.

Nobuhiko Okamoto (N)

Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan.

Seiji Mizuno (S)

Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan.

Yusaku Kaido (Y)

Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

Yoshiaki Ohkuma (Y)

Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

Yutaka Hirose (Y)

Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

Tohru Ishitani (T)

Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Kenjiro Kosaki (K)

Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH