Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
25
09
2020
accepted:
09
12
2020
revised:
02
12
2020
pubmed:
27
1
2021
medline:
27
1
2022
entrez:
26
1
2021
Statut:
ppublish
Résumé
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Identifiants
pubmed: 33495544
doi: 10.1038/s41380-020-00999-7
pii: 10.1038/s41380-020-00999-7
pmc: PMC8505258
doi:
Substances chimiques
Prions
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2685-2706Subventions
Organisme : CIHR
Pays : Canada
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2020. The Author(s).
Références
Das AS, Zou WQ. Prions: beyond a single protein. Clin Microbiol Rev. 2016;29:633–58.
pubmed: 27226089
pmcid: 4978610
doi: 10.1128/CMR.00046-15
Prusiner SB, Groth DF, Cochran SP, Masiarz FR, McKinley MP, Martinez HM. Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochem. 1980;19:4883–91.
doi: 10.1021/bi00562a028
Ironside JW. Neuropathological findings in new variant CJD and experimental transmission of BSE. FEMS Immunol Med Mic. 1998;21:91–95.
doi: 10.1016/S0928-8244(98)00020-0
Lee CC, Nayak A, Sethuraman A, Belfort G, McRae GJ. A three-stage kinetic model of amyloid fibrillation. Biophys J. 2007;92:3448–58.
pubmed: 17325005
pmcid: 1853138
doi: 10.1529/biophysj.106.098608
Ahn TB, Langston JW, Aachi VR, Dickson DW. Relationship of neighboring tissue and gliosis to alpha-synuclein pathology in a fetal transplant for Parkinson’s disease. Am J Neurodegen Dis. 2012;1:49–59.
Chu Y, Kordower JH. Lewy body pathology in fetal grafts. Ann NY Acad Sci. 2010;1184:55–67.
pubmed: 20146690
doi: 10.1111/j.1749-6632.2009.05229.x
Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14:504–6.
pubmed: 18391962
doi: 10.1038/nm1747
Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–3.
pubmed: 18391963
doi: 10.1038/nm1746
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.
pubmed: 12498954
doi: 10.1016/S0197-4580(02)00065-9
Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 2012;209:975–86.
pubmed: 22508839
pmcid: 3348112
doi: 10.1084/jem.20112457
Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A, et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75:351–62.
pubmed: 24243558
doi: 10.1002/ana.24066
Dehay B, Bezard E. Intrastriatal injection of alpha-synuclein fibrils induces Parkinson-like pathology in macaques. Brain. 2019;142:3321–2.
pubmed: 31665750
doi: 10.1093/brain/awz329
Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron. 2019;103:627–41 e627.
pubmed: 31255487
pmcid: 6706297
doi: 10.1016/j.neuron.2019.05.035
Challis C, Hori A, Sampson TR, Yoo BB, Challis RC, Hamilton AM, et al. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci. 2020;23:327–36.
pubmed: 32066981
pmcid: 7065967
doi: 10.1038/s41593-020-0589-7
Groveman BR, Orru CD, Hughson AG, Raymond LD, Zanusso G, Ghetti B, et al. Rapid and ultra-sensitive quantitation of disease-associated alpha-synuclein seeds in brain and cerebrospinal fluid by alphaSyn RT-QuIC. Acta Neuropathol Commun. 2018;6:7.
pubmed: 29422107
pmcid: 5806364
doi: 10.1186/s40478-018-0508-2
Singh S, DeMarco ML. In vitro conversion assays diagnostic for neurodegenerative proteinopathies. JALM. 2020;5:142–157.
pubmed: 31811072
Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33:403–8.
pubmed: 8307060
doi: 10.1159/000116984
Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 2006;313:1781–4.
pubmed: 16990547
doi: 10.1126/science.1131864
Gary C, Lam S, Herard AS, Koch JE, Petit F, Gipchtein P, et al. Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathol Commun. 2019;7:126.
pubmed: 31481130
pmcid: 6724379
doi: 10.1186/s40478-019-0771-x
Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. PNAS. 2013;110:9535–40.
pubmed: 23690619
pmcid: 3677441
doi: 10.1073/pnas.1301175110
Porta S, Xu Y, Restrepo CR, Kwong LK, Zhang B, Brown HJ, et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun. 2018;9:4220.
pubmed: 30310141
pmcid: 6181940
doi: 10.1038/s41467-018-06548-9
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegen. 2011;6:39.
doi: 10.1186/1750-1326-6-39
Mulder CK, Dong Y, Brugghe HF, Timmermans HA, Tilstra W, Westdijk J, et al. Immunization with small amyloid-beta-derived cyclopeptide conjugates diminishes amyloid-beta-induced neurodegeneration in mice. J Alzheimer’s Dis. 2016;52:1111–23.
doi: 10.3233/JAD-151136
Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremades N, Gottler LM, et al. Best practices for generating and using Alpha-synuclein pre-formed fibrils to model Parkinson’s disease in rodents. J Parkinson’s Dis. 2018;8:303–22.
doi: 10.3233/JPD-171248
Masnata M, Sciacca G, Maxan A, Bousset L, Denis HL, Lauruol F, et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019;137:981–1001.
pubmed: 30788585
pmcid: 6531424
doi: 10.1007/s00401-019-01973-6
Zeineddine R, Pundavela JF, Corcoran L, Stewart EM, Do-Ha D, Bax M, et al. SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Mol Neurodegen. 2015;10:57.
doi: 10.1186/s13024-015-0053-4
Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat. 2014;8:155.
pubmed: 25565980
pmcid: 4266040
doi: 10.3389/fnana.2014.00155
Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21:1370–9.
pubmed: 30250265
pmcid: 6615039
doi: 10.1038/s41593-018-0236-8
Holley SM, Kamdjou T, Reidling JC, Fury B, Coleal-Bergum D, Bauer G, et al. Therapeutic effects of stem cells in rodent models of Huntington’s disease: Review and electrophysiological findings. CNS Neurosci Ther. 2018;24:329–42.
pubmed: 29512295
pmcid: 6489814
doi: 10.1111/cns.12839
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegen. 2017;12:89.
doi: 10.1186/s13024-017-0231-7
Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29:3276–87.
pubmed: 19279265
pmcid: 2819812
doi: 10.1523/JNEUROSCI.4707-08.2009
Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell. 2013;12:342–53.
pubmed: 23472873
pmcid: 3700554
doi: 10.1016/j.stem.2012.12.015
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.
pubmed: 26687838
doi: 10.1016/j.neuron.2015.11.013
Rayon T, Stamataki D, Perez-Carrasco R, Garcia-Perez L, Barrington C, Melchionda M, et al. Species-specific pace of development is associated with differences in protein stability. Science. 2020;369:eaba7667.
pubmed: 32943498
pmcid: 7116327
doi: 10.1126/science.aba7667
Prusiner SB. Prions. PNAS. 1998;95:13363–83.
pubmed: 9811807
pmcid: 33918
doi: 10.1073/pnas.95.23.13363
Barria MA, Balachandran A, Morita M, Kitamoto T, Barron R, Manson J, et al. Molecular barriers to zoonotic transmission of prions. Emerg Infect Dis. 2014;20:88–97.
pubmed: 24377702
pmcid: 3884726
doi: 10.3201/eid2001.130858
Wiseman FK, Cancellotti E, Piccardo P, Iremonger K, Boyle A, Brown D, et al. The glycosylation status of PrPC is a key factor in determining transmissible spongiform encephalopathy transmission between species. J Virol. 2015;89:4738–47.
pubmed: 25673720
pmcid: 4403468
doi: 10.1128/JVI.02296-14
Hasegawa K, Mohri S, Yokoyama T. Comparison of the local structural stabilities of mammalian prion protein (PrP) by fragment molecular orbital calculations. Prion. 2013;7:185–91.
pubmed: 23232497
pmcid: 3609128
doi: 10.4161/pri.23122
Sanchez-Garcia J, Fernandez-Funez P. D159 and S167 are protective residues in the prion protein from dog and horse, two prion-resistant animals. Neurobiol Dis. 2018;119:1–12.
pubmed: 30010001
pmcid: 6139044
doi: 10.1016/j.nbd.2018.07.011
Barron RM, Thomson V, Jamieson E, Melton DW, Ironside J, Will R, et al. Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers. EMBO J. 2001;20:5070–8.
pubmed: 11566872
pmcid: 125625
doi: 10.1093/emboj/20.18.5070
Korth C, Kaneko K, Groth D, Heye N, Telling G, Mastrianni J, et al. Abbreviated incubation times for human prions in mice expressing a chimeric mouse-human prion protein transgene. PNAS. 2003;100:4784–9.
pubmed: 12684540
pmcid: 153633
doi: 10.1073/pnas.2627989100
Hernandez F, Merchan-Rubira J, Valles-Saiz L, Rodriguez-Matellan A, Avila J. Differences between human and murine tau at the N-terminal end. Front Aging Neurosci. 2020;12:11.
pubmed: 32063841
pmcid: 6999090
doi: 10.3389/fnagi.2020.00011
Hernandez F, Cuadros R, Olla I, Garcia C, Ferrer I, Perry G, et al. Differences in structure and function between human and murine tau. Biochim Biophys Acta Mol Basis Dis. 2019;1865:2024–30.
pubmed: 31189515
doi: 10.1016/j.bbadis.2018.08.010
Stanford PM, Shepherd CE, Halliday GM, Brooks WS, Schofield PW, Brodaty H, et al. Mutations in the tau gene that cause an increase in three repeat tau and frontotemporal dementia. Brain. 2003;126(Pt 4):814–26.
pubmed: 12615641
doi: 10.1093/brain/awg090
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–5.
pubmed: 9641683
doi: 10.1038/31508
Metrick MA II, Ferreira NDC, Saijo E, Kraus A, Newell K, Zanusso G, et al. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol Commun. 2020;8:22.
pubmed: 32087764
pmcid: 7036215
doi: 10.1186/s40478-020-0887-z
Hu WT, Parisi JE, Knopman DS, Boeve BF, Dickson DW, Ahlskog JE, et al. Clinical features and survival of 3R and 4R tauopathies presenting as behavioral variant frontotemporal dementia. Alzheimer Dis Assoc Disord. 2007;21:S39–43.
pubmed: 18090422
doi: 10.1097/WAD.0b013e31815bf5e5
Dinkel PD, Siddiqua A, Huynh H, Shah M, Margittai M. Variations in filament conformation dictate seeding barrier between three- and four-repeat tau. Biochemistry. 2011;50:4330–6.
pubmed: 21510682
doi: 10.1021/bi2004685
Levarska L, Zilka N, Jadhav S, Neradil P, Novak M. Of rodents and men: the mysterious interneuronal pilgrimage of misfolded protein tau in Alzheimer’s disease. J Alzheimer’s Dis. 2013;37:569–77.
doi: 10.3233/JAD-131106
Sayas CL, Medina M, Cuadros R, Olla I, Garcia E, Perez M, et al. Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE. 2019;14:e0210864.
pubmed: 30668577
pmcid: 6342323
doi: 10.1371/journal.pone.0210864
Ueno H, Yamaguchi T, Fukunaga S, Okada Y, Yano Y, Hoshino M, et al. Comparison between the aggregation of human and rodent amyloid beta-proteins in GM1 ganglioside clusters. Biochemistry. 2014;53:7523–30.
pubmed: 25399921
doi: 10.1021/bi501239q
Jankowsky JL, Younkin LH, Gonzales V, Fadale DJ, Slunt HH, Lester HA, et al. Rodent A beta modulates the solubility and distribution of amyloid deposits in transgenic mice. J Biol Chem. 2007;282:22707–20.
pubmed: 17556372
doi: 10.1074/jbc.M611050200
Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, et al. Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J Neurosci. 2000;20:3606–11.
pubmed: 10804202
pmcid: 6772682
doi: 10.1523/JNEUROSCI.20-10-03606.2000
Tanaka G, Yamanaka T, Furukawa Y, Kajimura N, Mitsuoka K, Nukina N. Sequence- and seed-structure-dependent polymorphic fibrils of alpha-synuclein. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1410–20.
pubmed: 30790619
doi: 10.1016/j.bbadis.2019.02.013
Luk KC, Covell DJ, Kehm VM, Zhang B, Song IY, Byrne MD, et al. Molecular and biological compatibility with host alpha-synuclein influences fibril pathogenicity. Cell Rep. 2016;16:3373–87.
pubmed: 27653697
pmcid: 5087609
doi: 10.1016/j.celrep.2016.08.053
Fares MB, Maco B, Oueslati A, Rockenstein E, Ninkina N, Buchman VL, et al. Induction of de novo alpha-synuclein fibrillization in a neuronal model for Parkinson’s disease. PNAS. 2016;113:E912–921.
pubmed: 26839406
pmcid: 4763739
doi: 10.1073/pnas.1512876113
Tartari M, Gissi C, Lo Sardo V, Zuccato C, Picardi E, Pesole G, et al. Phylogenetic comparison of huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin. Mol Biol Evol. 2008;25:330–8.
pubmed: 18048403
doi: 10.1093/molbev/msm258
Walker FO. Huntington’s disease. Lancet. 2007;369:218–28.
pubmed: 17240289
doi: 10.1016/S0140-6736(07)60111-1
Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol. 2003;465:11–26.
pubmed: 12926013
doi: 10.1002/cne.10776
Heng MY, Detloff PJ, Albin RL. Rodent genetic models of Huntington disease. Neurobiol Dis. 2008;32:1–9.
pubmed: 18638556
doi: 10.1016/j.nbd.2008.06.005
Seetharaman SV, Taylor AB, Holloway S, Hart PJ. Structures of mouse SOD1 and human/mouse SOD1 chimeras. Arch Biochem Biophys. 2010;503:183–90.
pubmed: 20727846
pmcid: 3037271
doi: 10.1016/j.abb.2010.08.014
Karch CM, Borchelt DR. Aggregation modulating elements in mutant human superoxide dismutase 1. Arch Biochem Biophys. 2010;503:175–82.
pubmed: 20682279
pmcid: 2997613
doi: 10.1016/j.abb.2010.07.027
Wang HY, Wang IF, Bose J, Shen CK. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics. 2004;83:130–9.
pubmed: 14667816
doi: 10.1016/S0888-7543(03)00214-3
D’Alton S, Altshuler M, Lewis J. Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA. 2015;21:1419–32.
pubmed: 26089325
pmcid: 4509932
doi: 10.1261/rna.047647.114
Gumina V, Onesto E, Colombrita C, Maraschi A, Silani V, Ratti A. Inter-species differences in regulation of the progranulin-Sortilin axis in TDP-43 Cell models of neurodegeneration. Int J Mol Sci. 2019;20:5866.
pmcid: 6928728
doi: 10.3390/ijms20235866
Colby DW, Zhang Q, Wang S, Groth D, Legname G, Riesner D, et al. Prion detection by an amyloid seeding assay. PNAS. 2007;104:20914–9.
pubmed: 18096717
pmcid: 2409241
doi: 10.1073/pnas.0710152105
Wilham JM, Orru CD, Bessen RA, Atarashi R, Sano K, Race B, et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010;6:e1001217.
pubmed: 21152012
pmcid: 2996325
doi: 10.1371/journal.ppat.1001217
Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001;411:810–3.
pubmed: 11459061
doi: 10.1038/35081095
Raymond GJ, Hope J, Kocisko DA, Priola SA, Raymond LD, Bossers A, et al. Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature. 1997;388:285–8.
pubmed: 9230438
doi: 10.1038/40876
Caughey B, Orru CD, Groveman BR, Hughson AG, Manca M, Raymond LD, et al. Amplified detection of prions and other amyloids by RT-QuIC in diagnostics and the evaluation of therapeutics and disinfectants. Prog Mol Biol Transl Sci. 2017;150:375–88.
pubmed: 28838670
doi: 10.1016/bs.pmbts.2017.06.003
Soto-Gamez A, Quax WJ, Demaria M. Regulation of survival networks in senescent cells: from mechanisms to interventions. J Mol Biol. 2019;431:2629–43.
pubmed: 31153901
doi: 10.1016/j.jmb.2019.05.036
Kaur G, Dufour JM. Cell lines: valuable tools or useless artifacts. Spermatogenesis. 2012;2:1–5.
pubmed: 22553484
pmcid: 3341241
doi: 10.4161/spmg.19885
Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. PNAS. 2013;110:E3138–3147.
pubmed: 23898162
pmcid: 3746848
Evans LD, Wassmer T, Fraser G, Smith J, Perkinton M, Billinton A, et al. Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep. 2018;22:3612–24.
pubmed: 29590627
pmcid: 5896171
doi: 10.1016/j.celrep.2018.03.021
Jansen AH, Batenburg KL, Pecho-Vrieseling E, Reits EA. Visualization of prion-like transfer in Huntington’s disease models. Biochim Biophys Acta Mol Basis Dis. 2017;1863:793–800.
pubmed: 28040507
doi: 10.1016/j.bbadis.2016.12.015
Jurgielewicz BJ, Yao Y, Stice SL. Kinetics and specificity of HEK293T extracellular vesicle uptake using imaging flow cytometry. Nanoscale Res Lett. 2020;15:170.
pubmed: 32833066
pmcid: 7445225
doi: 10.1186/s11671-020-03399-6
Heravi M, Dargahi L, Parsafar S, Tayaranian Marvian A, Aliakbari F, Morshedi D. The primary neuronal cells are more resistant than PC12 cells to alpha-synuclein toxic aggregates. Neurosci Lett. 2019;701:38–47.
pubmed: 30776494
doi: 10.1016/j.neulet.2019.01.055
Deng L, Pollmeier L, Zhou Q, Bergemann S, Bode C, Hein L, et al. Gene expression in immortalized versus primary isolated cardiac endothelial cells. Sci Rep. 2020;10:2241.
pubmed: 32042042
pmcid: 7010830
doi: 10.1038/s41598-020-59213-x
Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH. MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun. 2006;351:192–7.
pubmed: 17055458
pmcid: 2708968
doi: 10.1016/j.bbrc.2006.10.020
Evans M. Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol. 2011;12:680–6.
pubmed: 21941277
doi: 10.1038/nrm3190
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
pubmed: 16904174
doi: 10.1016/j.cell.2006.07.024
Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.
pubmed: 18157115
doi: 10.1038/nature06534
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.
pubmed: 18029452
doi: 10.1126/science.1151526
Suga M, Kondo T, Inoue H. Modeling neurological disorders with human pluripotent stem cell-derived astrocytes. Int J Mol Sci. 2019;20:3862.
pmcid: 6720891
doi: 10.3390/ijms20163862
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, et al. Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules. 2020;25:2000.
pmcid: 7221979
doi: 10.3390/molecules25082000
Chanoumidou K, Mozafari S, Baron-Van Evercooren A, Kuhlmann T. Stem cell derived oligodendrocytes to study myelin diseases. Glia. 2020;68:705–20.
pubmed: 31633852
doi: 10.1002/glia.23733
Hasselmann J, Blurton-Jones M. Human iPSC-derived microglia: a growing toolset to study the brain’s innate immune cells. Glia. 2020;68:721–39.
pubmed: 31926038
pmcid: 7813153
doi: 10.1002/glia.23781
Hong W, Wang Z, Liu W, O’Malley TT, Jin M, Willem M, et al. Diffusible, highly bioactive oligomers represent a critical minority of soluble Abeta in Alzheimer’s disease brain. Acta Neuropathol. 2018;136:19–40.
pubmed: 29687257
pmcid: 6647843
doi: 10.1007/s00401-018-1846-7
Reilly P, Winston CN, Baron KR, Trejo M, Rockenstein EM, Akers JC, et al. Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation. Neurobiol Dis. 2017;106:222–34.
pubmed: 28610892
pmcid: 5593133
doi: 10.1016/j.nbd.2017.06.005
Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10:615–22.
pubmed: 17435755
pmcid: 3799799
doi: 10.1038/nn1876
di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Munoz JP, Richaud-Patin Y, et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in parkinson’s disease. Stem Cell Rep. 2019;12:213–29.
doi: 10.1016/j.stemcr.2018.12.011
Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4:141ra190.
doi: 10.1126/scitranslmed.3003985
Li L, Roh JH, Chang EH, Lee Y, Lee S, Kim M, et al. iPSC modeling of presenilin1 mutation in Alzheimer’s disease with cerebellar ataxia. Exp Neurobiol. 2018;27:350–64.
pubmed: 30429645
pmcid: 6221836
doi: 10.5607/en.2018.27.5.350
Lee JK, Jin HK, Park MH, Kim BR, Lee PH, Nakauchi H, et al. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. J Exp Med. 2014;211:1551–70.
pubmed: 25049335
pmcid: 4113944
doi: 10.1084/jem.20132451
Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO. 2016;35:1656–76.
doi: 10.15252/embj.201694401
Scialo C, De Cecco E, Manganotti P, Legname G. Prion and prion-like protein strains: deciphering the molecular basis of heterogeneity in neurodegeneration. Viruses. 2019;11:261.
pmcid: 6466326
doi: 10.3390/v11030261
Chai X, Dage JL, Citron M. Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis. 2012;48:356–66.
pubmed: 22668776
doi: 10.1016/j.nbd.2012.05.021
Bright J, Hussain S, Dang V, Wright S, Cooper B, Byun T, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36:693–709.
pubmed: 25442111
doi: 10.1016/j.neurobiolaging.2014.09.007
Moore S, Evans LD, Andersson T, Portelius E, Smith J, Dias TB, et al. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep. 2015;11:689–96.
pubmed: 25921538
pmcid: 4431668
doi: 10.1016/j.celrep.2015.03.068
Reyes JF, Olsson TT, Lamberts JT, Devine MJ, Kunath T, Brundin P. A cell culture model for monitoring alpha-synuclein cell-to-cell transfer. Neurobiol Dis. 2015;77:266–75.
pubmed: 25046995
doi: 10.1016/j.nbd.2014.07.003
Pecho-Vrieseling E, Rieker C, Fuchs S, Bleckmann D, Esposito MS, Botta P, et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci. 2014;17:1064–72.
pubmed: 25017010
doi: 10.1038/nn.3761
Kanmert D, Cantlon A, Muratore CR, Jin M, O’Malley TT, Lee G, et al. C-terminally truncated forms of Tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death. J Neurosci. 2015;35:10851–65.
pubmed: 26224867
pmcid: 6605107
doi: 10.1523/JNEUROSCI.0387-15.2015
Guix FX, Corbett GT, Cha DJ, Mustapic M, Liu W, Mengel D, et al. Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int J Mol Sci. 2018;19:663.
pmcid: 5877524
doi: 10.3390/ijms19030663
Usenovic M, Niroomand S, Drolet RE, Yao L, Gaspar RC, Hatcher NG, et al. Internalized Tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci. 2015;35:14234–50.
pubmed: 26490863
pmcid: 6605424
doi: 10.1523/JNEUROSCI.1523-15.2015
Verheyen A, Diels A, Dijkmans J, Oyelami T, Meneghello G, Mertens L, et al. Using human iPSC-derived neurons to model TAU aggregation. PLoS ONE. 2015;10:e0146127.
pubmed: 26720731
pmcid: 4697850
doi: 10.1371/journal.pone.0146127
Prots I, Grosch J, Brazdis RM, Simmnacher K, Veber V, Havlicek S, et al. Alpha-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. PNAS. 2018;115:7813–8.
pubmed: 29991596
pmcid: 6065020
doi: 10.1073/pnas.1713129115
Silva MC, Cheng C, Mair W, Almeida S, Fong H, Biswas MHU, et al. Human iPSC-derived neuronal model of Tau-A152T frontotemporal dementia reveals tau-mediated mechanisms of neuronal vulnerability. Stem Cell Rep. 2016;7:325–40.
doi: 10.1016/j.stemcr.2016.08.001
Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, et al. iPS cell cultures from a Gerstmann-Straussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology. Mol Neurobiol. 2018;55:3033–48.
pubmed: 28466265
doi: 10.1007/s12035-017-0506-6
Jarosz-Griffiths HH, Corbett NJ, Rowland HA, Fisher K, Jones AC, Baron J, et al. Proteolytic shedding of the prion protein via activation of metallopeptidase ADAM10 reduces cellular binding and toxicity of amyloid-beta oligomers. J Biol Chem. 2019;294:7085–97.
pubmed: 30872401
pmcid: 6497954
doi: 10.1074/jbc.RA118.005364
Gribaudo S, Tixador P, Bousset L, Fenyi A, Lino P, Melki R, et al. Propagation of alpha-Synuclein Strains within human reconstructed neuronal network. Stem Cell Rep. 2019;12:230–44.
doi: 10.1016/j.stemcr.2018.12.007
Corbett GT, Wang Z, Hong W, Colom-Cadena M, Rose J, Liao M, et al. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol. 2020;139:503–26.
pubmed: 31853635
doi: 10.1007/s00401-019-02114-9
Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72.
pubmed: 20071342
pmcid: 2838344
doi: 10.1074/jbc.M109.081125
Lindstrom V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, et al. Extensive uptake of alpha-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neuro. 2017;82:143–56.
doi: 10.1016/j.mcn.2017.04.009
Braidy N, Gai WP, Xu YH, Sachdev P, Guillemin GJ, Jiang XM, et al. Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neuro. 2013;2:20.
doi: 10.1186/2047-9158-2-20
Cavaliere F, Cerf L, Dehay B, Ramos-Gonzalez P, De Giorgi F, Bourdenx M, et al. In vitro alpha-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol Dis. 2017;103:101–12.
pubmed: 28411117
doi: 10.1016/j.nbd.2017.04.011
Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, et al. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflam. 2018;15:269.
doi: 10.1186/s12974-018-1309-z
Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.
pubmed: 26057852
pmcid: 4460904
doi: 10.1038/srep11161
Martini-Stoica H, Cole AL, Swartzlander DB, Chen F, Wan YW, Bajaj L, et al. TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J Exp Med. 2018;215:2355–77.
pubmed: 30108137
pmcid: 6122971
doi: 10.1084/jem.20172158
Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9:453–7.
pubmed: 12612547
doi: 10.1038/nm838
Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron. 1996;17:553–65.
pubmed: 8816718
doi: 10.1016/S0896-6273(00)80187-7
Pearce MMP, Spartz EJ, Hong W, Luo L, Kopito RR. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun. 2015;6:6768.
pubmed: 25866135
doi: 10.1038/ncomms7768
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98:1141–54 e1147.
pubmed: 29861287
pmcid: 6023751
doi: 10.1016/j.neuron.2018.05.008
Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen S, Gubert Olive M, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Rep. 2017;9:1885–97.
doi: 10.1016/j.stemcr.2017.10.016
Fong LK, Yang MM, Dos Santos Chaves R, Reyna SM, Langness VF, Woodruff G, et al. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. J Biol Chem. 2018;293:11341–57.
pubmed: 29858247
pmcid: 6065173
doi: 10.1074/jbc.RA117.000441
Lorenzini I, Alsop E, Levy J, Gittings LM, Rabichow BE, lall d, et al. Activated iPSC-microglia from C9orf72 ALS/FTD patients exhibit endosomal-lysosomal dysfunction. bioRxiv. 2020:277459.
Rostami J, Holmqvist S, Lindstrom V, Sigvardson J, Westermark GT, Ingelsson M, et al. Human astrocytes transfer aggregated Alpha-Synuclein via tunneling nanotubes. J Neurosci. 2017;37:11835–53.
pubmed: 29089438
pmcid: 5719970
doi: 10.1523/JNEUROSCI.0983-17.2017
Krejciova Z, Alibhai J, Zhao C, Krencik R, Rzechorzek NM, Ullian EM, et al. Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner. J Exp Med. 2017;214:3481–95.
pubmed: 29141869
pmcid: 5716027
doi: 10.1084/jem.20161547
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–20.
pubmed: 22278060
pmcid: 3338985
doi: 10.1038/nature10821
Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Teglasi A, Bock I, et al. Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer’s Res Ther. 2017;9:90.
doi: 10.1186/s13195-017-0317-z
Fujimori K, Ishikawa M, Otomo A, Atsuta N, Nakamura R, Akiyama T, et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med. 2018;24:1579–89.
pubmed: 30127392
doi: 10.1038/s41591-018-0140-5
Miguel L, Rovelet-Lecrux A, Feyeux M, Frebourg T, Nassoy P, Campion D, et al. Detection of all adult Tau isoforms in a 3D culture model of iPSC-derived neurons. Stem Cell Res. 2019;40:101541.
pubmed: 31522011
doi: 10.1016/j.scr.2019.101541
Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell. 2015;16:591–600.
pubmed: 26046759
pmcid: 4508309
doi: 10.1016/j.stem.2015.05.004
Wegmann S, Bennett RE, Delorme L, Robbins AB, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404.
pubmed: 31249873
pmcid: 6594764
doi: 10.1126/sciadv.aaw6404
Nekrasov ED, Vigont VA, Klyushnikov SA, Lebedeva OS, Vassina EM, Bogomazova AN, et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegen. 2016;11:27.
doi: 10.1186/s13024-016-0092-5
Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013;13:691–705.
pubmed: 24315443
pmcid: 4153390
doi: 10.1016/j.stem.2013.11.006
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.
pubmed: 20107439
pmcid: 2829121
doi: 10.1038/nature08797
Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. PNAS. 2011;108:10343–8.
pubmed: 21646515
pmcid: 3121829
doi: 10.1073/pnas.1105135108
Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224–7.
pubmed: 21725324
doi: 10.1038/nature10284
Abernathy DG, Kim WK, McCoy MJ, Lake AM, Ouwenga R, Lee SW, et al. MicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblasts. Cell Stem Cell. 2017;21:332–48 e339.
pubmed: 28886366
pmcid: 5679239
doi: 10.1016/j.stem.2017.08.002
Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, et al. Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341–52.
pubmed: 29403030
pmcid: 5857213
doi: 10.1038/s41593-018-0075-7
Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2013;56:355–64.
pubmed: 23891805
pmcid: 4772428
doi: 10.1016/j.mcn.2013.07.007
Arber C, Lovejoy C, Wray S. Stem cell models of Alzheimer’s disease: progress and challenges. Alzheimer’s Res Ther. 2017;9:42.
doi: 10.1186/s13195-017-0268-4
Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085–92.
pubmed: 27322420
pmcid: 4961585
doi: 10.1038/nn.4328
Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, et al. Neuronal activity regulates extracellular tau in vivo. J Exp Med. 2014;211:387–93.
pubmed: 24534188
pmcid: 3949564
doi: 10.1084/jem.20131685
Pignataro A, Middei S. Trans-synaptic spread of amyloid-beta in Alzheimer’s disease: paths to beta-amyloidosis. Neural Plast. 2017;2017:5281829.
pubmed: 29435372
pmcid: 5757149
doi: 10.1155/2017/5281829
Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH. Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci. 2005;25:10913–21.
pubmed: 16306404
pmcid: 6725870
doi: 10.1523/JNEUROSCI.2922-05.2005
Paillusson S, Clairembault T, Biraud M, Neunlist M, Derkinderen P. Activity-dependent secretion of alpha-synuclein by enteric neurons. J Neurochem. 2013;125:512–7.
pubmed: 23278133
doi: 10.1111/jnc.12131
Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14:389–94.
pubmed: 23412472
pmcid: 3615658
doi: 10.1038/embor.2013.15
Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, de Strooper B, et al. Synaptic contacts enhance cell-to-cell Tau pathology propagation. Cell Rep. 2015;11:1176–83.
pubmed: 25981034
doi: 10.1016/j.celrep.2015.04.043
Pruunsild P, Bengtson CP, Bading H. Networks of cultured iPSC-derived neurons reveal the human synaptic activity-regulated adaptive gene program. Cell Rep. 2017;18:122–35.
pubmed: 28052243
pmcid: 5236011
doi: 10.1016/j.celrep.2016.12.018
Amin H, Maccione A, Marinaro F, Zordan S, Nieus T, Berdondini L. Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for 3-month culture with 4096-electrode arrays. Front Neurosci. 2016;10:121.
pubmed: 27065786
pmcid: 4811967
doi: 10.3389/fnins.2016.00121
Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–98.
pubmed: 23764284
pmcid: 3751803
doi: 10.1016/j.neuron.2013.05.029
Nehme R, Zuccaro E, Ghosh SD, Li C, Sherwood JL, Pietilainen O, et al. Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep. 2018;23:2509–23.
pubmed: 29791859
pmcid: 6003669
doi: 10.1016/j.celrep.2018.04.066
Koppensteiner P, Boehm S, Arancio O. Electrophysiological profiles of induced neurons converted directly from adult human fibroblasts indicate incomplete neuronal conversion. Cell Reprogram. 2014;16:439–46.
pubmed: 25437871
pmcid: 4245879
doi: 10.1089/cell.2014.0054
Drouin-Ouellet J, Lau S, Brattas PL, Rylander Ottosson D, Pircs K, Grassi DA, et al. REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and -independent pathways. EMBO Mol Med. 2017;9:1117–31.
pubmed: 28646119
pmcid: 5538296
doi: 10.15252/emmm.201607471
Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807–15.
pubmed: 27110916
pmcid: 4882254
doi: 10.1038/nn.4297
de Rus Jacquet A, Tancredi JL, Lemire AL, DeSantis MC, Li W-P, O’Shea EK. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson’s disease. bioRxiv. 2020:178574.
Birger A, Ben-Dor I, Ottolenghi M, Turetsky T, Gil Y, Sweetat S, et al. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity. EBioMedicine. 2019;50:274–89.
pubmed: 31787569
pmcid: 6921360
doi: 10.1016/j.ebiom.2019.11.026
Chandrasekaran A, Avci HX, Leist M, Kobolak J, Dinnyes A. Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research. Front Cell Neurosci. 2016;10:215.
pubmed: 27725795
pmcid: 5035736
doi: 10.3389/fncel.2016.00215
de Rus Jacquet A. Preparation and co-culture of ipsc-derived dopaminergic neurons and astrocytes. Curr Protoc Cell Biol. 2019;85:e98.
pubmed: 31763766
pmcid: 9285934
doi: 10.1002/cpcb.98
Tcw J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, et al. An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Rep. 2017;9:600–14.
doi: 10.1016/j.stemcr.2017.06.018
Li X, Tao Y, Bradley R, Du Z, Tao Y, Kong L, et al. Fast generation of functional subtype astrocytes from human pluripotent stem cells. Stem Cell Rep. 2018;11:998–1008.
doi: 10.1016/j.stemcr.2018.08.019
Hedegaard A, Monzon-Sandoval J, Newey SE, Whiteley ES, Webber C, Akerman CJ. Pro-maturational effects of Human iPSC-derived cortical astrocytes upon iPSC-derived cortical neurons. Stem Cell Rep. 2020;15:38–51.
doi: 10.1016/j.stemcr.2020.05.003
Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech. 2020;13:dmm042317.
pubmed: 31953356
pmcid: 6994963
doi: 10.1242/dmm.042317
Schwartzentruber J, Foskolou S, Kilpinen H, Rodrigues J, Alasoo K, Knights AJ, et al. Molecular and functional variation in iPSC-derived sensory neurons. Nat Genet. 2018;50:54–61.
pubmed: 29229984
doi: 10.1038/s41588-017-0005-8
Barros CS, Franco SJ, Muller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 2011;3:a005108.
pubmed: 21123393
pmcid: 3003458
doi: 10.1101/cshperspect.a005108
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-derived paracrine signals: relevance for neurogenic niche regulation and blood-brain barrier integrity. Front Pharm. 2019;10:1346.
doi: 10.3389/fphar.2019.01346
Kornberg TB, Roy S. Communicating by touch–neurons are not alone. Trends Cell Biol. 2014;24:370–6.
pubmed: 24560610
pmcid: 4037336
doi: 10.1016/j.tcb.2014.01.003
Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 2016;17:3369–84.
pubmed: 28009303
pmcid: 5495578
doi: 10.1016/j.celrep.2016.12.001
Pievani M, Filippini N, van den Heuvel MP, Cappa SF, Frisoni GB. Brain connectivity in neurodegenerative diseases–from phenotype to proteinopathy. Nat Rev Neurol. 2014;10:620–33.
pubmed: 25287597
doi: 10.1038/nrneurol.2014.178
Vargas-Valderrama A, Messina A, Mitjavila-Garcia MT, Guenou H. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J Biomed Sci. 2020;27:67.
pubmed: 32443983
pmcid: 7245026
doi: 10.1186/s12929-020-00661-y
Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, et al. Generation of human vascularized brain organoids. Neuroreport. 2018;29:588–93.
pubmed: 29570159
pmcid: 6476536
doi: 10.1097/WNR.0000000000001014
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019;16:1169–75.
pubmed: 31591580
pmcid: 6918722
doi: 10.1038/s41592-019-0586-5
Worsdorfer P, Dalda N, Kern A, Kruger S, Wagner N, Kwok CK, et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep. 2019;9:15663.
pubmed: 31666641
pmcid: 6821804
doi: 10.1038/s41598-019-52204-7
Grebenyuk S, Ranga A. Engineering organoid vascularization. Front Bioeng Biotechnol. 2019;7:39.
pubmed: 30941347
pmcid: 6433749
doi: 10.3389/fbioe.2019.00039
Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 2017;8:1144–54.
doi: 10.1016/j.stemcr.2017.03.010
Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. PNAS. 2015;112:15672–7.
pubmed: 26644564
pmcid: 4697386
doi: 10.1073/pnas.1520760112
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.
pubmed: 23995685
doi: 10.1038/nature12517
Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12:671–8.
pubmed: 26005811
pmcid: 4489980
doi: 10.1038/nmeth.3415
Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. 2019;22:484–91.
pubmed: 30692691
pmcid: 6788758
doi: 10.1038/s41593-018-0316-9
Qian X, Song H, Ming GL. Brain organoids: advances, applications and challenges. Development. 2019;146:dev166074.
pubmed: 30992274
pmcid: 6503989
doi: 10.1242/dev.166074
Ormel PR, Vieira de Sa R, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.
pubmed: 30301888
pmcid: 6177485
doi: 10.1038/s41467-018-06684-2
Groveman BR, Foliaki ST, Orru CD, Zanusso G, Carroll JA, Race B, et al. Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun. 2019;7:90.
pubmed: 31196223
doi: 10.1186/s40478-019-0742-2
Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;21:383–98 e387.
pubmed: 28757360
pmcid: 5720381
doi: 10.1016/j.stem.2017.07.007
Bagley JA, Reumann D, Bian S, Levi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51.
pubmed: 28504681
pmcid: 5540177
doi: 10.1038/nmeth.4304
Bolhaqueiro ACF, van Jaarsveld RH, Ponsioen B, Overmeer RM, Snippert HJ, Kops G. Live imaging of cell division in 3D stem-cell organoid cultures. Methods Cell Biol. 2018;145:91–106.
pubmed: 29957217
doi: 10.1016/bs.mcb.2018.03.016
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20:435–49 e434.
pubmed: 28111201
pmcid: 5667944
doi: 10.1016/j.stem.2016.12.007
Browne AW, Arnesano C, Harutyunyan N, Khuu T, Martinez JC, Pollack HA, et al. Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging. Invest Ophthalmol Vis Sci. 2017;58:3311–8.
pubmed: 28672397
pmcid: 5495152
Held M, Santeramo I, Wilm B, Murray P, Levy R. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS ONE. 2018;13:e0199918.
pubmed: 30048451
pmcid: 6062017
doi: 10.1371/journal.pone.0199918
Andilla J, Jorand R, Olarte OE, Dufour AC, Cazales M, Montagner YL, et al. Imaging tissue-mimic with light sheet microscopy: a comparative guideline. Sci Rep. 2017;7:44939.
pubmed: 28322312
pmcid: 5381005
doi: 10.1038/srep44939
Dekkers JF, Alieva M, Wellens LM, Ariese HCR, Jamieson PR, Vonk AM, et al. High-resolution 3D imaging of fixed and cleared organoids. Nat Protoc. 2019;14:1756–71.
pubmed: 31053799
doi: 10.1038/s41596-019-0160-8
Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71.
pubmed: 21982369
pmcid: 3204802
doi: 10.1016/j.neuron.2011.08.033
Nobuhara CK, DeVos SL, Commins C, Wegmann S, Moore BD, Roe AD, et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of Tau in vitro. Am J Pathol. 2017;187:1399–412.
pubmed: 28408124
pmcid: 5455060
doi: 10.1016/j.ajpath.2017.01.022
Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ, Luk KC, et al. Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep. 2014;7:2054–65.
pubmed: 24931606
pmcid: 4410967
doi: 10.1016/j.celrep.2014.05.033
Cheong R, Paliwal S, Levchenko A. High-content screening in microfluidic devices. Expert Opin Drug Discov. 2010;5:715–20.
pubmed: 21852997
pmcid: 3156449
doi: 10.1517/17460441.2010.495116
Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, et al. Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol. 2012;72:517–24.
pubmed: 23109146
pmcid: 3490229
doi: 10.1002/ana.23747
Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun. 2015;6:8490.
pubmed: 26458742
doi: 10.1038/ncomms9490
Dujardin S, Lecolle K, Caillierez R, Begard S, Zommer N, Lachaud C, et al. Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun. 2014;2:14.
pubmed: 24479894
pmcid: 3922636
doi: 10.1186/2051-5960-2-14
Pal A, Glass H, Naumann M, Kreiter N, Japtok J, Sczech R, et al. High content organelle trafficking enables disease state profiling as powerful tool for disease modelling. Sci Data. 2018;5:180241.
pubmed: 30422121
pmcid: 6233479
doi: 10.1038/sdata.2018.241
Lewandowska MK, Radivojevic M, Jackel D, Muller J, Hierlemann AR. Cortical axons, isolated in channels, display activity-dependent signal modulation as a result of targeted stimulation. Front Neurosci. 2016;10:83.
pubmed: 27013945
pmcid: 4779934
doi: 10.3389/fnins.2016.00083
Bukhari H, Muller T. Endogenous fluorescence tagging by CRISPR. Trends Cell Biol. 2019;29:912–28.
pubmed: 31522960
doi: 10.1016/j.tcb.2019.08.004
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.
pubmed: 31147612
pmcid: 7079207
doi: 10.1038/s41580-019-0131-5
Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9:1911.
pubmed: 29765029
pmcid: 5953931
doi: 10.1038/s41467-018-04252-2
Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS. Manipulating the prion protein gene sequence and expression levels with CRISPR/Cas9. PLoS ONE. 2016;11:e0154604.
pubmed: 27128441
pmcid: 4851410
doi: 10.1371/journal.pone.0154604
Chen JJ, Nathaniel DL, Raghavan P, Nelson M, Tian R, Tse E, et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J Biol Chem. 2019;294:18952–66.
pubmed: 31578281
pmcid: 6916486
doi: 10.1074/jbc.RA119.009432
Rice AM, McLysaght A. Dosage-sensitive genes in evolution and disease. BMC Biol. 2017;15:78.
pubmed: 28863777
pmcid: 5580218
doi: 10.1186/s12915-017-0418-y
Bae EJ, Yang NY, Song M, Lee CS, Lee JS, Jung BC, et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein. Nat Commun. 2014;5:4755.
pubmed: 25156829
doi: 10.1038/ncomms5755
Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol. 2018;13:406–16.
pubmed: 29035510
doi: 10.1021/acschembio.7b00657
Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25:461–74.
pubmed: 24484067
pmcid: 4028091
doi: 10.1089/hum.2013.200
Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, et al. Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in huntington disease patient-derived induced pluripotent stem cells. Stem Cell Rep. 2017;8:619–33.
doi: 10.1016/j.stemcr.2017.01.022
Chen Y, Dolt KS, Kriek M, Baker T, Downey P, Drummond NJ, et al. Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur J Neurosci. 2019;49:510–24.
pubmed: 30472757
doi: 10.1111/ejn.14286
Hallmann AL, Arauzo-Bravo MJ, Mavrommatis L, Ehrlich M, Ropke A, Brockhaus J, et al. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Rep. 2017;7:42991.
pubmed: 28256506
pmcid: 5335603
doi: 10.1038/srep42991
Heman-Ackah SM, Manzano R, Hoozemans JJM, Scheper W, Flynn R, Haerty W, et al. Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum Mol Genet. 2017;26:4441–50.
pubmed: 28973645
pmcid: 5886237
doi: 10.1093/hmg/ddx331
Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318–31.
pubmed: 21757228
pmcid: 3155290
doi: 10.1016/j.cell.2011.06.019
Reinhardt P, Schmid B, Burbulla LF, Schondorf DC, Wagner L, Glatza M, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013;12:354–67.
pubmed: 23472874
doi: 10.1016/j.stem.2013.01.008
Jackow J, Guo Z, Hansen C, Abaci HE, Doucet YS, Shin JU, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. PNAS. 2019;116:26846–52.
pmcid: 6936361
doi: 10.1073/pnas.1907081116
Li XL, Li GH, Fu J, Fu YW, Zhang L, Chen W, et al. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res. 2018;46:10195–215.
pubmed: 30239926
pmcid: 6212847
doi: 10.1093/nar/gky804
Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24:1216–24.
pubmed: 30082871
pmcid: 6107069
doi: 10.1038/s41591-018-0137-0
Prusiner SB. Molecular biology of prion diseases. Science. 1991;252:1515–22.
pubmed: 1675487
doi: 10.1126/science.1675487
Makrinou E, Collinge J, Antoniou M. Genomic characterization of the human prion protein (PrP) gene locus. Mamm Genome. 2002;13:696–703.
pubmed: 12514748
doi: 10.1007/s00335-002-3043-0
Schmitz M, Lullmann K, Zafar S, Ebert E, Wohlhage M, Oikonomou P, et al. Association of prion protein genotype and scrapie prion protein type with cellular prion protein charge isoform profiles in cerebrospinal fluid of humans with sporadic or familial prion diseases. Neurobiol Aging. 2014;35:1177–88.
pubmed: 24360565
doi: 10.1016/j.neurobiolaging.2013.11.010
Giannopoulos PN, Robertson C, Jodoin J, Paudel H, Booth SA, LeBlanc AC. Phosphorylation of prion protein at serine 43 induces prion protein conformational change. J Neurosci. 2009;29:8743–51.
pubmed: 19587281
pmcid: 2745063
doi: 10.1523/JNEUROSCI.2294-09.2009
Parchi P, Chen SG, Brown P, Zou W, Capellari S, Budka H, et al. Different patterns of truncated prion protein fragments correlate with distinct phenotypes in P102L Gerstmann-Straussler-Scheinker disease. PNAS. 1998;95:8322–7.
pubmed: 9653185
pmcid: 20974
doi: 10.1073/pnas.95.14.8322
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol. 2019;29:278–300.
pubmed: 30588685
pmcid: 8028685
doi: 10.1111/bpa.12695
Zhong Q, Congdon EE, Nagaraja HN, Kuret J. Tau isoform composition influences rate and extent of filament formation. J Biol Chem. 2012;287:20711–9.
pubmed: 22539343
pmcid: 3370253
doi: 10.1074/jbc.M112.364067
Hefti MM, Farrell K, Kim S, Bowles KR, Fowkes ME, Raj T, et al. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development. PLoS ONE. 2018;13:e0195771.
pubmed: 29634760
pmcid: 5892924
doi: 10.1371/journal.pone.0195771
Lacovich V, Espindola SL, Alloatti M, Pozo Devoto V, Cromberg LE, Carna ME, et al. Tau Isoforms Imbalance Impairs the Axonal Transport of the Amyloid Precursor Protein in Human Neurons. J Neurosci. 2017;37:58–69.
pubmed: 28053030
pmcid: 6705673
doi: 10.1523/JNEUROSCI.2305-16.2016
Liu C, Gotz J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE. 2013;8:e84849.
pubmed: 24386422
pmcid: 3875548
doi: 10.1371/journal.pone.0084849
Neddens J, Temmel M, Flunkert S, Kerschbaumer B, Hoeller C, Loeffler T, et al. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun. 2018;6:52.
pubmed: 29958544
pmcid: 6027763
doi: 10.1186/s40478-018-0557-6
Ercan-Herbst E, Ehrig J, Schondorf DC, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer’s disease brain. Acta Neuropathol Commun. 2019;7:192.
pubmed: 31796124
pmcid: 6892178
doi: 10.1186/s40478-019-0823-2
Katsumoto A, Takeuchi H, Tanaka F. Tau pathology in chronic traumatic encephalopathy and Alzheimer’s disease: similarities and differences. Front Neurol. 2019;10:980.
pubmed: 31551922
pmcid: 6748163
doi: 10.3389/fneur.2019.00980
Barthelemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimer’s Res Ther. 2020;12:26.
doi: 10.1186/s13195-020-00596-4
Barthelemy NR, Mallipeddi N, Moiseyev P, Sato C, Bateman RJ. Tau phosphorylation rates measured by mass spectrometry differ in the intracellular brain vs. extracellular cerebrospinal fluid compartments and are differentially affected by Alzheimer’s disease. Front Aging Neurosci. 2019;11:121.
pubmed: 31178717
pmcid: 6537657
doi: 10.3389/fnagi.2019.00121
Vuono R, Winder-Rhodes S, de Silva R, Cisbani G, Drouin-Ouellet J, Network RIotEHsD. et al. The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain. 2015;138(Pt 7):1907–18.
pubmed: 25953777
pmcid: 4572485
doi: 10.1093/brain/awv107
Bamburg JR, Bernstein BW, Davis RC, Flynn KC, Goldsbury C, Jensen JR, et al. ADF/Cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res. 2010;7:241–50.
pubmed: 20088812
pmcid: 4458070
doi: 10.2174/156720510791050902
Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. PNAS. 1997;94:4113–8.
pubmed: 9108114
pmcid: 20577
doi: 10.1073/pnas.94.8.4113
Ferrer I, Lopez-Gonzalez I, Carmona M, Arregui L, Dalfo E, Torrejon-Escribano B, et al. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol. 2014;73:81–97.
pubmed: 24335532
doi: 10.1097/NEN.0000000000000030
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019;99:912–28.
pubmed: 30742061
pmcid: 7289372
doi: 10.1038/s41374-019-0197-x
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis. 2020;35:11–30.
pubmed: 31811496
doi: 10.1007/s11011-019-00516-y
Rezaei-Ghaleh N, Amininasab M, Kumar S, Walter J, Zweckstetter M. Phosphorylation modifies the molecular stability of beta-amyloid deposits. Nat Commun. 2016;7:11359.
pubmed: 27072999
pmcid: 4833870
doi: 10.1038/ncomms11359
Kumar S, Wirths O, Stuber K, Wunderlich P, Koch P, Theil S, et al. Phosphorylation of the amyloid beta-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol. 2016;131:525–37.
pubmed: 26898910
pmcid: 4789232
doi: 10.1007/s00401-016-1546-0
Thal DR, Walter J, Saido TC, Fandrich M. Neuropathology and biochemistry of Abeta and its aggregates in Alzheimer’s disease. Acta Neuropathol. 2015;129:167–82.
pubmed: 25534025
doi: 10.1007/s00401-014-1375-y
Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer’s disease. Pathol Int. 2017;67:185–93.
pubmed: 28261941
doi: 10.1111/pin.12520
Bassil F, Brown HJ, Pattabhiraman S, Iwasyk JE, Maghames CM, Meymand ES, et al. Amyloid-Beta (Abeta) plaques promote seeding and spreading of alpha-synuclein and Tau in a mouse model of lewy body disorders with abeta pathology. Neuron. 2020;105:260–75 e266.
pubmed: 31759806
doi: 10.1016/j.neuron.2019.10.010
Batarseh YS, Duong QV, Mousa YM, Al Rihani SB, Elfakhri K, Kaddoumi A. Amyloid-beta and astrocytes interplay in amyloid-beta related disorders. Int J Mol Sci. 2016;17:338.
pubmed: 26959008
pmcid: 4813200
doi: 10.3390/ijms17030338
Irwin DJ, Hurtig HI. The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology to Dementia in Lewy Body Disorders. JADP. 2018;8:444.
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.
pubmed: 9197268
doi: 10.1126/science.276.5321.2045
Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.
pubmed: 19915575
pmcid: 2787725
doi: 10.1038/ng.487
Beyer K, Ariza A. Alpha-Synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol Neurobiol. 2013;47:509–24.
pubmed: 22923347
doi: 10.1007/s12035-012-8330-5
Burre J, Sharma M, Sudhof TC. Cell biology and pathophysiology of alpha-Synuclein. Cold Spring Harb Perspect Med. 2018;8:a024091.
pubmed: 28108534
pmcid: 5519445
doi: 10.1101/cshperspect.a024091
Villar-Pique A, Lopes da Fonseca T, Outeiro TF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem. 2016;139(Suppl 1):240–55.
pubmed: 26190401
doi: 10.1111/jnc.13249
Calo L, Wegrzynowicz M, Santivanez-Perez J, Grazia, Spillantini M. Synaptic failure and alpha-synuclein. Mov Disord. 2016;31:169–77.
pubmed: 26790375
doi: 10.1002/mds.26479
Peng C, Gathagan RJ, Lee VM. Distinct alpha-Synuclein strains and implications for heterogeneity among alpha-Synucleinopathies. Neurobiol Dis. 2018;109(Pt B):209–18.
pubmed: 28751258
doi: 10.1016/j.nbd.2017.07.018
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72:971–83.
Ruzo A, Ismailoglu I, Popowski M, Haremaki T, Croft GF, Deglincerti A, et al. Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon. PLoS ONE. 2015;10:e0127687.
pubmed: 26010866
pmcid: 4444280
doi: 10.1371/journal.pone.0127687
Mort M, Carlisle FA, Waite AJ, Elliston L, Allen ND, Jones L, et al. Huntingtin exists as multiple splice forms in human brain. J Huntington’s Dis. 2015;4:161–71.
doi: 10.3233/JHD-150151
Neueder A, Landles C, Ghosh R, Howland D, Myers RH, Faull RLM, et al. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci Rep. 2017;7:1307.
pubmed: 28465506
pmcid: 5431000
doi: 10.1038/s41598-017-01510-z
Romo L, Mohn ES, Aronin N. A fresh look at huntingtin mRNA processing in Huntington’s disease. J Huntington’s Dis. 2018;7:101–8.
doi: 10.3233/JHD-180292
Ehrnhoefer DE, Sutton L, Hayden MR. Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist. 2011;17:475–92.
pubmed: 21311053
pmcid: 3200085
doi: 10.1177/1073858410390378
Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M, St-Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31–42.
pubmed: 24798518
doi: 10.1002/ana.24174
Hartlage-Rubsamen M, Ratz V, Zeitschel U, Finzel L, Machner L, Koppen J, et al. Endogenous mouse huntingtin is highly abundant in cranial nerve nuclei, co-aggregates to Abeta plaques and is induced in reactive astrocytes in a transgenic mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2019;7:79.
pubmed: 31109380
pmcid: 6526682
doi: 10.1186/s40478-019-0726-2
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.
pubmed: 8446170
doi: 10.1038/362059a0
Groner Y, Lieman-Hurwitz J, Dafni N, Sherman L, Levanon D, Bernstein Y, et al. Molecular structure and expression of the gene locus on chromosome 21 encoding the Cu/Zn superoxide dismutase and its relevance to Down syndrome. Ann NY Acad Sci. 1985;450:133–56.
pubmed: 3160286
doi: 10.1111/j.1749-6632.1985.tb21489.x
Zinman L, Liu HN, Sato C, Wakutani Y, Marvelle AF, Moreno D, et al. A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology. 2009;72:1153–9.
pubmed: 19332692
pmcid: 2680064
doi: 10.1212/01.wnl.0000345363.65799.35
Fay JM, Zhu C, Proctor EA, Tao Y, Cui W, Ke H, et al. A phosphomimetic mutation stabilizes SOD1 and rescues cell viability in the context of an ALS-associated mutation. Structure. 2016;24:1898–906.
pubmed: 27667694
pmcid: 5093072
doi: 10.1016/j.str.2016.08.011
Jiang H, Shimizu H, Shiga A, Tanaka M, Onodera O, Kakita A, et al. Familial amyotrophic lateral sclerosis with an I104F mutation in the SOD1 gene: Multisystem degeneration with neurofilamentous aggregates and SOD1 inclusions. Neuropathology. 2017;37:69–77.
pubmed: 27444855
doi: 10.1111/neup.12324
Milani P, Gagliardi S, Cova E, Cereda C. SOD1 transcriptional and posttranscriptional regulation and its potential implications in ALS. Neurol Res Int. 2011;2011:458427.
pubmed: 21603028
pmcid: 3096450
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25.
pubmed: 30837838
pmcid: 6382748
doi: 10.3389/fnmol.2019.00025
Xiao S, Sanelli T, Chiang H, Sun Y, Chakrabartty A, Keith J, et al. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol. 2015;130:49–61.
pubmed: 25788357
pmcid: 4468798
doi: 10.1007/s00401-015-1412-5
Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol. 2008;64:60–70.
pubmed: 18546284
pmcid: 2674108
doi: 10.1002/ana.21425
Robinson JL, Geser F, Stieber A, Umoh M, Kwong LK, Van Deerlin VM, et al. TDP-43 skeins show properties of amyloid in a subset of ALS cases. Acta Neuropathol. 2013;125:121–31.
pubmed: 23124365
doi: 10.1007/s00401-012-1055-8
Lin WL, Dickson DW. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol. 2008;116:205–13.
pubmed: 18607609
pmcid: 2706695
doi: 10.1007/s00401-008-0408-9