Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1.
Animals
Arterioles
/ metabolism
Cell Differentiation
Cell Proliferation
Cellular Senescence
Gene Deletion
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells
/ metabolism
Membrane Proteins
/ metabolism
Mice, Mutant Strains
Mice, Transgenic
Netrin-1
/ metabolism
Signal Transduction
Stem Cell Niche
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 01 2021
27 01 2021
Historique:
received:
07
09
2019
accepted:
14
12
2020
entrez:
28
1
2021
pubmed:
29
1
2021
medline:
4
2
2021
Statut:
epublish
Résumé
Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.
Identifiants
pubmed: 33504783
doi: 10.1038/s41467-020-20801-0
pii: 10.1038/s41467-020-20801-0
pmc: PMC7840807
doi:
Substances chimiques
Membrane Proteins
0
neogenin
0
Netrin-1
158651-98-0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
608Subventions
Organisme : Medical Research Council
ID : MC_PC_17230
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/V005421/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK056638
Pays : United States
Références
Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).
pubmed: 25158935
doi: 10.1016/j.stem.2014.07.005
Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).
pubmed: 15989959
doi: 10.1016/j.cell.2005.05.026
Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015).
pubmed: 26095048
pmcid: 4542150
doi: 10.1016/j.stem.2015.05.003
Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).
pubmed: 25686605
doi: 10.1038/nature14242
Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).
pubmed: 29323290
pmcid: 5884107
doi: 10.1038/nature25168
Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10, 273–283 (2012).
pubmed: 22385655
doi: 10.1016/j.stem.2012.02.007
Purton, L. E. & Scadden, D. T. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1, 263–270 (2007).
pubmed: 18371361
doi: 10.1016/j.stem.2007.08.016
Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).
pubmed: 13776896
doi: 10.2307/3570892
Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).
pubmed: 23993099
doi: 10.1016/j.cell.2013.08.007
Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).
pubmed: 19062086
doi: 10.1016/j.cell.2008.10.048
Cabezas-Wallscheid, N. et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169, 807–823.e819 (2017).
pubmed: 28479188
doi: 10.1016/j.cell.2017.04.018
Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).
pubmed: 19060879
doi: 10.1038/nbt.1517
Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309 e1210 (2016).
pubmed: 27839867
pmcid: 5115957
doi: 10.1016/j.cell.2016.10.022
Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).
pubmed: 11067876
pmcid: 2193349
doi: 10.1084/jem.192.9.1273
Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).
pubmed: 22110168
pmcid: 3244040
doi: 10.1084/jem.20111490
Verovskaya, E. et al. Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood 122, 523–532 (2013).
pubmed: 23719303
doi: 10.1182/blood-2013-01-481135
Sawen, P. et al. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. Elife 7, https://doi.org/10.7554/eLife.41258 (2018).
Yamamoto, R. et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22, 600–607 e604 (2018).
pubmed: 29625072
pmcid: 5896201
doi: 10.1016/j.stem.2018.03.013
Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).
pubmed: 23584423
doi: 10.1038/nri3433
Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).
pubmed: 24792119
pmcid: 4070311
doi: 10.1016/j.stem.2014.03.002
Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).
pubmed: 23415915
doi: 10.1016/j.stem.2013.01.017
Florian, M. C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530 (2012).
pubmed: 22560076
pmcid: 3348626
doi: 10.1016/j.stem.2012.04.007
Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).
pubmed: 27074508
pmcid: 5035541
doi: 10.1038/nature17638
Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).
pubmed: 29736022
pmcid: 6095812
doi: 10.1038/s41591-018-0030-x
Ho, Y. H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418 e406 (2019).
Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).
pubmed: 24429631
pmcid: 4514480
doi: 10.1038/nature12984
Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).
pubmed: 30745579
pmcid: 6483843
doi: 10.1038/s41580-019-0103-9
Chen, X. et al. Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell 21, 747–760 e747 (2017).
pubmed: 29198940
pmcid: 5975960
doi: 10.1016/j.stem.2017.11.003
Hur, J. et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 18, 508–521 (2016).
pubmed: 26996598
doi: 10.1016/j.stem.2016.01.013
Duchene, J. et al. Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat. Immunol. 18, 753–761 (2017).
pubmed: 28553950
pmcid: 5480598
doi: 10.1038/ni.3763
Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685–697 (2007).
pubmed: 18371409
doi: 10.1016/j.stem.2007.10.020
Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).
pubmed: 9634238
doi: 10.1038/31269
Molineux, G., Migdalska, A., Szmitkowski, M., Zsebo, K. & Dexter, T. M. The effects on hematopoiesis of recombinant stem-cell factor (Ligand for C-Kit) administered invivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 78, 961–966 (1991).
pubmed: 1714329
doi: 10.1182/blood.V78.4.961.961
Siebold, C., Yamashita, T., Monnier, P. P., Mueller, B. K. & Pasterkamp, R. J. RGMs: structural insights, molecular regulation, and downstream signaling. Trends Cell Biol. 27, 365–378 (2017).
pubmed: 28007423
doi: 10.1016/j.tcb.2016.11.009
Mirakaj, V., Jennewein, C., Konig, K., Granja, T. & Rosenberger, P. The guidance receptor neogenin promotes pulmonary inflammation during lung injury. FASEB J. 26, 1549–1558 (2012).
pubmed: 22198383
doi: 10.1096/fj.11-200063
Schlegel, M. et al. Inhibition of neogenin fosters resolution of inflammation and tissue regeneration. J. Clin. Invest. 128, 4711–4726 (2018).
pubmed: 30222138
pmcid: 6159953
doi: 10.1172/JCI96259
Muramatsu, R. et al. RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nat. Med. 17, 488–494 (2011).
pubmed: 21423182
doi: 10.1038/nm.2321
Leighton, P. A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).
pubmed: 11242070
doi: 10.1038/35065539
Xu, K. et al. Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science 344, 1275–1279 (2014).
pubmed: 24876346
pmcid: 4369087
doi: 10.1126/science.1255149
Healey, E. G. et al. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Nat. Struct. Mol. Biol. 22, 458–465 (2015).
pubmed: 25938661
pmcid: 4456160
doi: 10.1038/nsmb.3016
Lee, N. K. et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat. Commun. 7, 11082 (2016).
pubmed: 27029596
pmcid: 4821876
doi: 10.1038/ncomms11082
Gulati, G. S. et al. Neogenin-1 distinguishes between myeloid-biased and balanced Hoxb5 (+) mouse long-term hematopoietic stem cells. Proc. Natl Acad. Sci. USA 116, 25115–25125 (2019).
pubmed: 31754028
doi: 10.1073/pnas.1911024116
pmcid: 6911217
Forsberg, E. C. et al. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet. 1, e28 (2005).
pubmed: 16151515
pmcid: 1200425
doi: 10.1371/journal.pgen.0010028
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
pubmed: 27365425
pmcid: 5305050
doi: 10.1182/blood-2016-05-716480
Essers, M. A. et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).
pubmed: 19212321
doi: 10.1038/nature07815
Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465, 793–797 (2010).
pubmed: 20535209
pmcid: 2935898
doi: 10.1038/nature09135
Bae, G. U. et al. Neogenin regulates skeletal myofiber size and focal adhesion kinase and extracellular signal-regulated kinase activities in vivo and in vitro. Mol. Biol. Cell 20, 4920–4931 (2009).
pubmed: 19812254
pmcid: 2785735
doi: 10.1091/mbc.e09-06-0491
O’Leary, C. J. et al. Neogenin recruitment of the WAVE regulatory complex to ependymal and radial progenitor adherens junctions prevents hydrocephalus. Cell Rep. 20, 370–383 (2017).
pubmed: 28700939
doi: 10.1016/j.celrep.2017.06.051
Venezia, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2, e301 (2004).
pubmed: 15459755
pmcid: 520599
doi: 10.1371/journal.pbio.0020301
Wilson, NicolaK. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).
pubmed: 26004780
pmcid: 4460190
doi: 10.1016/j.stem.2015.04.004
Haas, S. et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434 (2015).
pubmed: 26299573
doi: 10.1016/j.stem.2015.07.007
Zhao, M. et al. N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 26, 652–669 e656 (2019).
pubmed: 30650358
pmcid: 6890378
doi: 10.1016/j.celrep.2018.12.093
Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313 (2015).
pubmed: 25704240
pmcid: 4359055
doi: 10.1016/j.stem.2015.01.017
Scheicher, R. et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 125, 90–101 (2015).
pubmed: 25342715
pmcid: 4281832
doi: 10.1182/blood-2014-06-584417
Min, I. M. et al. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2, 380–391 (2008).
pubmed: 18397757
doi: 10.1016/j.stem.2008.01.015
Galloway, A. et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science 352, 453–459 (2016).
pubmed: 27102483
doi: 10.1126/science.aad5978
Deneault, E. et al. A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 137, 369–379 (2009).
pubmed: 19379700
pmcid: 5770201
doi: 10.1016/j.cell.2009.03.026
Adelman, E. R. et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9, 1080–1101 (2019).
pubmed: 31085557
pmcid: 7080409
doi: 10.1158/2159-8290.CD-18-1474
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
pubmed: 18267078
doi: 10.1016/j.cell.2007.12.033
Huang, C. Y., Bredemeyer, A. L., Walker, L. M., Bassing, C. H. & Sleckman, B. P. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur. J. Immunol. 38, 342–349 (2008).
pubmed: 18196519
doi: 10.1002/eji.200737972
Yamashita, M. & Passegue, E. TNF-alpha coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25, 357–372 e357 (2019).
pubmed: 31230859
pmcid: 6733032
doi: 10.1016/j.stem.2019.05.019
Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).
pubmed: 8978605
doi: 10.1016/S0092-8674(00)81795-X
Dominici, C. et al. Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature 545, 350–354 (2017).
pubmed: 28445456
pmcid: 5438598
doi: 10.1038/nature22331
Guo, C., Yang, W. & Lobe, C. G. A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18 (2002).
pubmed: 11835669
doi: 10.1002/gene.10021
Xu, C. et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat. Commun. 9, 2449 (2018).
pubmed: 29934585
pmcid: 6015052
doi: 10.1038/s41467-018-04726-3
Brunet, I. et al. Netrin-1 controls sympathetic arterial innervation. J. Clin. Invest. 124, 3230–3240 (2014).
pubmed: 24937433
pmcid: 4071369
doi: 10.1172/JCI75181
LeBleu, V. S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med. 19, 227–231 (2013).
pubmed: 23353556
pmcid: 4457508
doi: 10.1038/nm.2989
Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502, 232–236 (2013).
pubmed: 23934107
doi: 10.1038/nature12495
Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).
pubmed: 22138693
pmcid: 3637952
doi: 10.1038/ng.1009
Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).
pubmed: 25130491
pmcid: 4163922
doi: 10.1016/j.stem.2014.06.018
Jeong, M. et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep. 23, 1–10 (2018).
pubmed: 29617651
pmcid: 5908249
doi: 10.1016/j.celrep.2018.03.025
Monnier, P. P. et al. RGM is a repulsive guidance molecule for retinal axons. Nature 419, 392–395 (2002).
pubmed: 12353034
doi: 10.1038/nature01041
Zhou, Z. et al. Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev. Cell 19, 90–102 (2010).
pubmed: 20643353
pmcid: 2924163
doi: 10.1016/j.devcel.2010.06.016
Singbrant, S. et al. Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 115, 4689–4698 (2010).
pubmed: 20371744
doi: 10.1182/blood-2009-05-220988
Yung, A. R., Nishitani, A. M. & Goodrich, L. V. Phenotypic analysis of mice completely lacking netrin 1. Development 142, 3686–3691 (2015).
pubmed: 26395479
pmcid: 4647218
Bin, J. M. et al. Complete loss of Netrin-1 results in embryonic lethality and severe axon guidance defects without increased neural cell death. Cell Rep. 12, 1099–1106 (2015).
pubmed: 26257176
doi: 10.1016/j.celrep.2015.07.028
Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).
pubmed: 15260986
doi: 10.1016/j.cell.2004.07.004
Walter, D. et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520, 549–552 (2015).
pubmed: 25707806
doi: 10.1038/nature14131
Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).
pubmed: 25079315
pmcid: 4456040
doi: 10.1038/nature13619
Ozmadenci, D. et al. Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance. Nat. Commun. 6, 7398 (2015).
pubmed: 26154507
doi: 10.1038/ncomms8398
Sung, P. J. et al. Cancer-associated fibroblasts produce netrin-1 to control cancer cell plasticity. Cancer Res. 79, 3651–3661 (2019).
pubmed: 31088838
doi: 10.1158/0008-5472.CAN-18-2952
Stein, S. J. & Baldwin, A. S. Deletion of the NF-kappaB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 121, 5015–5024 (2013).
pubmed: 23670180
pmcid: 3689248
doi: 10.1182/blood-2013-02-486142
Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19, 214–223 (2017).
pubmed: 28218906
pmcid: 5467892
doi: 10.1038/ncb3475
Baccin, C. et al. Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 1, 38–48 (2020).
doi: 10.1038/s41556-019-0439-6
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).
pubmed: 22281595
pmcid: 3270376
doi: 10.1038/nature10783
Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).
pubmed: 24107994
pmcid: 3821873
doi: 10.1038/nature12612
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).
pubmed: 14586460
doi: 10.1038/nature02033
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Love, M. I. et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8