Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women.
Aged
Aged, 80 and over
Aging
/ genetics
Cohort Studies
Europe
Female
Genetic Predisposition to Disease
/ genetics
Genome-Wide Association Study
/ methods
Growth Differentiation Factor 5
/ genetics
HLA-DQ alpha-Chains
/ genetics
Humans
Male
Middle Aged
Muscle Strength
/ genetics
Muscle Weakness
/ genetics
Polymorphism, Single Nucleotide
Sarcopenia
/ genetics
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 01 2021
28 01 2021
Historique:
received:
13
05
2020
accepted:
22
12
2020
entrez:
29
1
2021
pubmed:
30
1
2021
medline:
23
2
2021
Statut:
epublish
Résumé
Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10
Identifiants
pubmed: 33510174
doi: 10.1038/s41467-021-20918-w
pii: 10.1038/s41467-021-20918-w
pmc: PMC7844411
doi:
Substances chimiques
GDF5 protein, human
0
Growth Differentiation Factor 5
0
HLA-DQ alpha-Chains
0
HLA-DQA1 antigen
0
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
654Subventions
Organisme : Medical Research Council
ID : MC_UU_00006/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL120393
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL130114
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_12015/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : U01 HL120393
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG017917
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010161
Pays : United States
Organisme : NIA NIH HHS
ID : U19 AG063893
Pays : United States
Organisme : Medical Research Council
ID : MR/M008924/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M023095/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : K01 AG057726
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG015819
Pays : United States
Références
Clark, B. C. & Manini, T. M. What is dynapenia? Nutrition 28, 495–503 (2012).
pubmed: 22469110
pmcid: 3571692
doi: 10.1016/j.nut.2011.12.002
Manini, T. M. & Clark, B. C. Dynapenia and aging: an update. J. Gerontol. Ser. A 67A, 28–40 (2012).
doi: 10.1093/gerona/glr010
Mitchell, W. K. et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 260 (2012).
pubmed: 22934016
pmcid: 3429036
doi: 10.3389/fphys.2012.00260
Cawthon, P. M. et al. Establishing the link between lean mass and grip strength cut points with mobility disability and other health outcomes: proceedings of the sarcopenia definition and outcomes consortium conference. J. Gerontol. Ser. A https://doi.org/10.1093/gerona/glz081 (2019).
doi: 10.1093/gerona/glz081
Rantanen, T. et al. Midlife hand grip strength as a predictor of old age disability. J. Am. Med. Assoc. 281, 558–560 (1999).
doi: 10.1001/jama.281.6.558
Cruz-Jentoft, A. J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 16–31 (2019).
doi: 10.1093/ageing/afy169
pubmed: 30312372
Frederiksen, H. et al. Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning. Genet. Epidemiol. 23, 110–122 (2002).
pubmed: 12214305
doi: 10.1002/gepi.1127
Matteini, A. M. et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 15, 792–800 (2016).
pubmed: 27325353
pmcid: 5013019
doi: 10.1111/acel.12468
Tikkanen, E. et al. Biological insights into muscular strength: genetic findings in the UK biobank. Sci. Rep. 8, 6451 (2018).
pubmed: 29691431
pmcid: 5915424
doi: 10.1038/s41598-018-24735-y
Willems, S. M. et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 8, 16015 (2017).
pubmed: 29313844
pmcid: 5510175
doi: 10.1038/ncomms16015
Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005–D1012 (2019).
pubmed: 30445434
doi: 10.1093/nar/gky1120
Zillikens, M. C. et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat. Commun. 8, 80 (2017).
pubmed: 28724990
pmcid: 5517526
doi: 10.1038/s41467-017-00031-7
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Studenski, S. A. et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 547–558 (2014).
pubmed: 24737557
pmcid: 3991146
doi: 10.1093/gerona/glu010
Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412–423 (2010).
pubmed: 20392703
pmcid: 2886201
doi: 10.1093/ageing/afq034
Stacey, D. et al. ProGeM: a framework for the prioritization of candidate causal genes at molecular quantitative trait loci. Nucleic Acids Res. 47, e3–e3 (2019).
pubmed: 30239796
doi: 10.1093/nar/gky837
Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1–20 (2018).
doi: 10.1038/s41467-018-03621-1
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380
pmcid: 5896795
doi: 10.1038/s41588-018-0081-4
Hemani, G. et al. The MR-base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).
pubmed: 29846171
pmcid: 5976434
doi: 10.7554/eLife.34408
Burgess, S. & Thompson, S. G. Use of allele scores as instrumental variables for Mendelian randomization. Int. J. Epidemiol. 42, 1134–1144 (2013).
pubmed: 24062299
pmcid: 3780999
doi: 10.1093/ije/dyt093
Williams, D. M., Jylhava, J., Pedersen, N. L. & Hagg, S. A frailty index for UK Biobank participants. J Gerontol Med. Sci. 74, 582–587 (2019).
doi: 10.1093/gerona/gly094
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838
pmcid: 3836174
doi: 10.1016/j.cell.2013.05.039
Kuo, C.-L., Pilling, L. C., Kuchel, G. A., Ferrucci, L. & Melzer, D. Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. Aging Cell e13017 (2019) https://doi.org/10.1111/acel.13017 .
Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. Elife 8, 1–71 (2019).
doi: 10.7554/eLife.39856
Cortes, A., Albers, P. K., Dendrou, C. A., Fugger, L. & McVean, G. Identifying cross-disease components of genetic risk across hospital data in the UK Biobank. Nat. Genet. (2019) https://doi.org/10.1038/s41588-019-0550-4 .
Jones, G. et al. Sarcopenia and variation in the Human Leukocyte Antigen complex. J. Gerontol. A. Biol. Sci. Med. Sci. (2019) https://doi.org/10.1093/gerona/glz042 .
Chen, Y.-W. et al. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis. BMC Immunol. 9, 43 (2008).
pubmed: 18671865
pmcid: 2529263
doi: 10.1186/1471-2172-9-43
Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. (2019) https://doi.org/10.1038/s41576-019-0183-6 .
Murphy, L. et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res 59, 1207–1213 (2008).
doi: 10.1002/art.24021
Francis-West, P. H. et al. Mechanisms of GDF-5 action during skeletal development. Development 126, 1305–1315 (1999).
pubmed: 10021348
doi: 10.1242/dev.126.6.1305
Capellini, T. D. et al. Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk. Nat. Genet. 49, 1202–1210 (2017).
pubmed: 28671685
pmcid: 6556117
doi: 10.1038/ng.3911
Miyamoto, Y. et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).
pubmed: 17384641
doi: 10.1038/2005
Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).
pubmed: 18193045
pmcid: 2914680
doi: 10.1038/ng.74
Uhalte, E. C., Wilkinson, J. M., Southam, L. & Zeggini, E. Pathways to understanding the genomic aetiology of osteoarthritis. Hum. Mol. Genet 26, R193–R201 (2017).
doi: 10.1093/hmg/ddx302
Pregizer, S. K. et al. Impact of broad regulatory regions on Gdf5 expression and function in knee development and susceptibility to osteoarthritis. Ann. Rheum. Dis. 77, 450 (2018).
pubmed: 29311146
doi: 10.1136/annrheumdis-2017-212475
Traoré, M. et al. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci. Transl. Med. 11, eaaw1131 (2019).
Osipovich, A. B., Jennings, J. L., Lin, Q., Link, A. J. & Ruley, H. E. Dyggve-Melchior-Clausen syndrome: chondrodysplasia resulting from defects in intracellular vesicle traffic. Proc. Natl Acad. Sci. USA 105, 16171–16176 (2008).
pubmed: 18852472
doi: 10.1073/pnas.0804259105
pmcid: 2571016
Paupe, V. et al. Recent advances in Dyggve-Melchior-Clausen syndrome. Mol. Genet. Metab. 83, 51–59 (2004).
pubmed: 15464420
doi: 10.1016/j.ymgme.2004.08.012
Kim, J.-H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156, 730–743 (2014).
pubmed: 24529376
doi: 10.1016/j.cell.2014.01.007
Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).
pubmed: 30664745
pmcid: 6400267
doi: 10.1038/s41588-018-0327-1
den Hollander, W. et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann. Rheum. Dis. 76, 2046–2053 (2017).
doi: 10.1136/annrheumdis-2017-211214
Herrmann, S. M. et al. Polymorphisms of the human matrix Gla protein (MGP) gene, vascular calcification, and myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 20, 2386–2393 (2000).
pubmed: 11073842
doi: 10.1161/01.ATV.20.11.2386
Rodríguez, A. J. et al. Aortic calcification is associated with five-year decline in handgrip strength in older women. Calcif. Tissue Int. 103, 589–598 (2018).
pubmed: 30039226
doi: 10.1007/s00223-018-0458-5
Ahmad, S., Jan, A. T., Baig, M. H., Lee, E. J. & Choi, I. Matrix gla protein: an extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sci. 172, 55–63 (2017).
pubmed: 28012893
doi: 10.1016/j.lfs.2016.12.011
Cui, G. et al. Association of common variants in TGFA with increased risk of knee osteoarthritis susceptibility. Genet. Test. Mol. Biomark. 21, 586–591 (2017).
doi: 10.1089/gtmb.2017.0045
Styrkarsdottir, U. et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat. Genet. 46, 498–502 (2014).
pubmed: 24728293
doi: 10.1038/ng.2957
Vermot, J., Niederreither, K., Garnier, J.-M., Chambon, P. & Dollé, P. Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc. Natl Acad. Sci. USA 100, 1763–1768 (2003).
pubmed: 12563036
doi: 10.1073/pnas.0437920100
pmcid: 149907
Nakayama, N. et al. A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development 131, 229–240 (2004).
pubmed: 14660436
doi: 10.1242/dev.00901
Chou, C.-H. et al. Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. Osteoarthr. Cartil. 23, 571–580 (2015).
doi: 10.1016/j.joca.2014.12.020
Miotto, B. et al. The RBBP6/ZBTB38/MCM10 axis regulates DNA replication and common fragile site stability. Cell Rep. 7, 575–587 (2014).
pubmed: 24726359
doi: 10.1016/j.celrep.2014.03.030
Oikawa, Y. et al. The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression. Cell Res 21, 1578–1590 (2011).
pubmed: 21625269
pmcid: 3365637
doi: 10.1038/cr.2011.90
Yen, K., Lee, C., Mehta, H. & Cohen, P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J. Mol. Endocrinol. 50, R11–R19 (2013).
pubmed: 23239898
pmcid: 3705736
doi: 10.1530/JME-12-0203
Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).
pubmed: 28436984
pmcid: 5841952
doi: 10.1038/ng.3841
Ruth, K. S. et al. Events in early life are associated with female reproductive ageing: a UK Biobank study. Sci. Rep. 6, 1–9 (2016).
doi: 10.1038/srep24710
Day, F. R., Perry, J. R. B. & Ong, K. K. Genetic regulation of puberty timing in humans. Neuroendocrinology 102, 247–255 (2015).
pubmed: 25968239
doi: 10.1159/000431023
Kuh, D., Hardy, R., Blodgett, J. M. & Cooper, R. Developmental factors associated with decline in grip strength from midlife to old age: a British birth cohort study. BMJ Open 9, 1–12 (2019).
doi: 10.1136/bmjopen-2018-025755
Liaw, F. Y. et al. Higher platelet-to-lymphocyte ratio increased the risk of sarcopenia in the community-dwelling older adults. Sci. Rep. 7, 16609 (2017).
pubmed: 29192175
pmcid: 5709494
doi: 10.1038/s41598-017-16924-y
Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. bioRxiv (unpublished Prepr (2020). https://doi.org/10.1101/2020.03.22.001453 .
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 258533 (2019) https://doi.org/10.1038/s41588-018-0311-9 .
Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).
pubmed: 29059683
pmcid: 5798588
doi: 10.1038/nature24284
Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).
pubmed: 26831199
pmcid: 4735748
doi: 10.1038/ncomms10023
van der Harst, P. & Verweij, N. identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).
pubmed: 29212778
pmcid: 5805277
doi: 10.1161/CIRCRESAHA.117.312086
Trajanoska, K. et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ 362, k3225 (2018).
pubmed: 30158200
pmcid: 6113773
doi: 10.1136/bmj.k3225
Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).
pubmed: 29559693
pmcid: 5896734
doi: 10.1038/s41588-018-0079-y
Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).
pubmed: 29892016
pmcid: 6568012
doi: 10.1038/s41588-018-0142-8
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
pubmed: 24390342
doi: 10.1038/nature12873
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354
pmcid: 5968830
doi: 10.1038/s41588-018-0058-3
Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. (2018) https://doi.org/10.1038/s41588-018-0241-6 .
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet 27, 3641–3649 (2018).
pubmed: 30124842
pmcid: 6488973
doi: 10.1093/hmg/ddy271
Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet 28, 166–174 (2019).
pubmed: 30239722
doi: 10.1093/hmg/ddy327