Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 01 2021
Historique:
received: 13 05 2020
accepted: 22 12 2020
entrez: 29 1 2021
pubmed: 30 1 2021
medline: 23 2 2021
Statut: epublish

Résumé

Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10

Identifiants

pubmed: 33510174
doi: 10.1038/s41467-021-20918-w
pii: 10.1038/s41467-021-20918-w
pmc: PMC7844411
doi:

Substances chimiques

GDF5 protein, human 0
Growth Differentiation Factor 5 0
HLA-DQ alpha-Chains 0
HLA-DQA1 antigen 0

Types de publication

Journal Article Meta-Analysis Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

654

Subventions

Organisme : Medical Research Council
ID : MC_UU_00006/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL120393
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL130114
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_12015/1
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : U01 HL120393
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG017917
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010161
Pays : United States
Organisme : NIA NIH HHS
ID : U19 AG063893
Pays : United States
Organisme : Medical Research Council
ID : MR/M008924/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M023095/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : K01 AG057726
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG015819
Pays : United States

Références

Clark, B. C. & Manini, T. M. What is dynapenia? Nutrition 28, 495–503 (2012).
pubmed: 22469110 pmcid: 3571692 doi: 10.1016/j.nut.2011.12.002
Manini, T. M. & Clark, B. C. Dynapenia and aging: an update. J. Gerontol. Ser. A 67A, 28–40 (2012).
doi: 10.1093/gerona/glr010
Mitchell, W. K. et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 260 (2012).
pubmed: 22934016 pmcid: 3429036 doi: 10.3389/fphys.2012.00260
Cawthon, P. M. et al. Establishing the link between lean mass and grip strength cut points with mobility disability and other health outcomes: proceedings of the sarcopenia definition and outcomes consortium conference. J. Gerontol. Ser. A https://doi.org/10.1093/gerona/glz081 (2019).
doi: 10.1093/gerona/glz081
Rantanen, T. et al. Midlife hand grip strength as a predictor of old age disability. J. Am. Med. Assoc. 281, 558–560 (1999).
doi: 10.1001/jama.281.6.558
Cruz-Jentoft, A. J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 16–31 (2019).
doi: 10.1093/ageing/afy169 pubmed: 30312372
Frederiksen, H. et al. Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning. Genet. Epidemiol. 23, 110–122 (2002).
pubmed: 12214305 doi: 10.1002/gepi.1127
Matteini, A. M. et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 15, 792–800 (2016).
pubmed: 27325353 pmcid: 5013019 doi: 10.1111/acel.12468
Tikkanen, E. et al. Biological insights into muscular strength: genetic findings in the UK biobank. Sci. Rep. 8, 6451 (2018).
pubmed: 29691431 pmcid: 5915424 doi: 10.1038/s41598-018-24735-y
Willems, S. M. et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 8, 16015 (2017).
pubmed: 29313844 pmcid: 5510175 doi: 10.1038/ncomms16015
Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005–D1012 (2019).
pubmed: 30445434 doi: 10.1093/nar/gky1120
Zillikens, M. C. et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat. Commun. 8, 80 (2017).
pubmed: 28724990 pmcid: 5517526 doi: 10.1038/s41467-017-00031-7
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Studenski, S. A. et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 547–558 (2014).
pubmed: 24737557 pmcid: 3991146 doi: 10.1093/gerona/glu010
Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412–423 (2010).
pubmed: 20392703 pmcid: 2886201 doi: 10.1093/ageing/afq034
Stacey, D. et al. ProGeM: a framework for the prioritization of candidate causal genes at molecular quantitative trait loci. Nucleic Acids Res. 47, e3–e3 (2019).
pubmed: 30239796 doi: 10.1093/nar/gky837
Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1–20 (2018).
doi: 10.1038/s41467-018-03621-1
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380 pmcid: 5896795 doi: 10.1038/s41588-018-0081-4
Hemani, G. et al. The MR-base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).
pubmed: 29846171 pmcid: 5976434 doi: 10.7554/eLife.34408
Burgess, S. & Thompson, S. G. Use of allele scores as instrumental variables for Mendelian randomization. Int. J. Epidemiol. 42, 1134–1144 (2013).
pubmed: 24062299 pmcid: 3780999 doi: 10.1093/ije/dyt093
Williams, D. M., Jylhava, J., Pedersen, N. L. & Hagg, S. A frailty index for UK Biobank participants. J Gerontol Med. Sci. 74, 582–587 (2019).
doi: 10.1093/gerona/gly094
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838 pmcid: 3836174 doi: 10.1016/j.cell.2013.05.039
Kuo, C.-L., Pilling, L. C., Kuchel, G. A., Ferrucci, L. & Melzer, D. Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. Aging Cell e13017 (2019) https://doi.org/10.1111/acel.13017 .
Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. Elife 8, 1–71 (2019).
doi: 10.7554/eLife.39856
Cortes, A., Albers, P. K., Dendrou, C. A., Fugger, L. & McVean, G. Identifying cross-disease components of genetic risk across hospital data in the UK Biobank. Nat. Genet. (2019) https://doi.org/10.1038/s41588-019-0550-4 .
Jones, G. et al. Sarcopenia and variation in the Human Leukocyte Antigen complex. J. Gerontol. A. Biol. Sci. Med. Sci. (2019) https://doi.org/10.1093/gerona/glz042 .
Chen, Y.-W. et al. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis. BMC Immunol. 9, 43 (2008).
pubmed: 18671865 pmcid: 2529263 doi: 10.1186/1471-2172-9-43
Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. (2019) https://doi.org/10.1038/s41576-019-0183-6 .
Murphy, L. et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res 59, 1207–1213 (2008).
doi: 10.1002/art.24021
Francis-West, P. H. et al. Mechanisms of GDF-5 action during skeletal development. Development 126, 1305–1315 (1999).
pubmed: 10021348 doi: 10.1242/dev.126.6.1305
Capellini, T. D. et al. Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk. Nat. Genet. 49, 1202–1210 (2017).
pubmed: 28671685 pmcid: 6556117 doi: 10.1038/ng.3911
Miyamoto, Y. et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).
pubmed: 17384641 doi: 10.1038/2005
Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).
pubmed: 18193045 pmcid: 2914680 doi: 10.1038/ng.74
Uhalte, E. C., Wilkinson, J. M., Southam, L. & Zeggini, E. Pathways to understanding the genomic aetiology of osteoarthritis. Hum. Mol. Genet 26, R193–R201 (2017).
doi: 10.1093/hmg/ddx302
Pregizer, S. K. et al. Impact of broad regulatory regions on Gdf5 expression and function in knee development and susceptibility to osteoarthritis. Ann. Rheum. Dis. 77, 450 (2018).
pubmed: 29311146 doi: 10.1136/annrheumdis-2017-212475
Traoré, M. et al. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci. Transl. Med. 11, eaaw1131 (2019).
Osipovich, A. B., Jennings, J. L., Lin, Q., Link, A. J. & Ruley, H. E. Dyggve-Melchior-Clausen syndrome: chondrodysplasia resulting from defects in intracellular vesicle traffic. Proc. Natl Acad. Sci. USA 105, 16171–16176 (2008).
pubmed: 18852472 doi: 10.1073/pnas.0804259105 pmcid: 2571016
Paupe, V. et al. Recent advances in Dyggve-Melchior-Clausen syndrome. Mol. Genet. Metab. 83, 51–59 (2004).
pubmed: 15464420 doi: 10.1016/j.ymgme.2004.08.012
Kim, J.-H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156, 730–743 (2014).
pubmed: 24529376 doi: 10.1016/j.cell.2014.01.007
Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).
pubmed: 30664745 pmcid: 6400267 doi: 10.1038/s41588-018-0327-1
den Hollander, W. et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann. Rheum. Dis. 76, 2046–2053 (2017).
doi: 10.1136/annrheumdis-2017-211214
Herrmann, S. M. et al. Polymorphisms of the human matrix Gla protein (MGP) gene, vascular calcification, and myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 20, 2386–2393 (2000).
pubmed: 11073842 doi: 10.1161/01.ATV.20.11.2386
Rodríguez, A. J. et al. Aortic calcification is associated with five-year decline in handgrip strength in older women. Calcif. Tissue Int. 103, 589–598 (2018).
pubmed: 30039226 doi: 10.1007/s00223-018-0458-5
Ahmad, S., Jan, A. T., Baig, M. H., Lee, E. J. & Choi, I. Matrix gla protein: an extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sci. 172, 55–63 (2017).
pubmed: 28012893 doi: 10.1016/j.lfs.2016.12.011
Cui, G. et al. Association of common variants in TGFA with increased risk of knee osteoarthritis susceptibility. Genet. Test. Mol. Biomark. 21, 586–591 (2017).
doi: 10.1089/gtmb.2017.0045
Styrkarsdottir, U. et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat. Genet. 46, 498–502 (2014).
pubmed: 24728293 doi: 10.1038/ng.2957
Vermot, J., Niederreither, K., Garnier, J.-M., Chambon, P. & Dollé, P. Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc. Natl Acad. Sci. USA 100, 1763–1768 (2003).
pubmed: 12563036 doi: 10.1073/pnas.0437920100 pmcid: 149907
Nakayama, N. et al. A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development 131, 229–240 (2004).
pubmed: 14660436 doi: 10.1242/dev.00901
Chou, C.-H. et al. Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. Osteoarthr. Cartil. 23, 571–580 (2015).
doi: 10.1016/j.joca.2014.12.020
Miotto, B. et al. The RBBP6/ZBTB38/MCM10 axis regulates DNA replication and common fragile site stability. Cell Rep. 7, 575–587 (2014).
pubmed: 24726359 doi: 10.1016/j.celrep.2014.03.030
Oikawa, Y. et al. The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression. Cell Res 21, 1578–1590 (2011).
pubmed: 21625269 pmcid: 3365637 doi: 10.1038/cr.2011.90
Yen, K., Lee, C., Mehta, H. & Cohen, P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J. Mol. Endocrinol. 50, R11–R19 (2013).
pubmed: 23239898 pmcid: 3705736 doi: 10.1530/JME-12-0203
Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).
pubmed: 28436984 pmcid: 5841952 doi: 10.1038/ng.3841
Ruth, K. S. et al. Events in early life are associated with female reproductive ageing: a UK Biobank study. Sci. Rep. 6, 1–9 (2016).
doi: 10.1038/srep24710
Day, F. R., Perry, J. R. B. & Ong, K. K. Genetic regulation of puberty timing in humans. Neuroendocrinology 102, 247–255 (2015).
pubmed: 25968239 doi: 10.1159/000431023
Kuh, D., Hardy, R., Blodgett, J. M. & Cooper, R. Developmental factors associated with decline in grip strength from midlife to old age: a British birth cohort study. BMJ Open 9, 1–12 (2019).
doi: 10.1136/bmjopen-2018-025755
Liaw, F. Y. et al. Higher platelet-to-lymphocyte ratio increased the risk of sarcopenia in the community-dwelling older adults. Sci. Rep. 7, 16609 (2017).
pubmed: 29192175 pmcid: 5709494 doi: 10.1038/s41598-017-16924-y
Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. bioRxiv (unpublished Prepr (2020). https://doi.org/10.1101/2020.03.22.001453 .
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 258533 (2019) https://doi.org/10.1038/s41588-018-0311-9 .
Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).
pubmed: 29059683 pmcid: 5798588 doi: 10.1038/nature24284
Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).
pubmed: 26831199 pmcid: 4735748 doi: 10.1038/ncomms10023
van der Harst, P. & Verweij, N. identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).
pubmed: 29212778 pmcid: 5805277 doi: 10.1161/CIRCRESAHA.117.312086
Trajanoska, K. et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ 362, k3225 (2018).
pubmed: 30158200 pmcid: 6113773 doi: 10.1136/bmj.k3225
Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).
pubmed: 29559693 pmcid: 5896734 doi: 10.1038/s41588-018-0079-y
Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).
pubmed: 29892016 pmcid: 6568012 doi: 10.1038/s41588-018-0142-8
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
pubmed: 24390342 doi: 10.1038/nature12873
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354 pmcid: 5968830 doi: 10.1038/s41588-018-0058-3
Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. (2018) https://doi.org/10.1038/s41588-018-0241-6 .
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet 27, 3641–3649 (2018).
pubmed: 30124842 pmcid: 6488973 doi: 10.1093/hmg/ddy271
Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet 28, 166–174 (2019).
pubmed: 30239722 doi: 10.1093/hmg/ddy327

Auteurs

Garan Jones (G)

Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.

Katerina Trajanoska (K)

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.

Adam J Santanasto (AJ)

University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA.

Najada Stringa (N)

Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.

Chia-Ling Kuo (CL)

Biostatistics Center, Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA.

Janice L Atkins (JL)

Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.

Joshua R Lewis (JR)

School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
School fo Public Health University of Sydney, Sydney, NSW, Australia.
Medical School, University of Western Australia, Crawley, WA, Australia.

ThuyVy Duong (T)

McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Shengjun Hong (S)

Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany.

Mary L Biggs (ML)

Cardiovascular Health Research Unit, Department of Medicine, and Department of Biostatistics, University of Washington, Seattle, WA, USA.

Jian'an Luan (J)

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.

Chloe Sarnowski (C)

Biostatistics Department, Boston University School of Public Health, Boston, MA, USA.

Kathryn L Lunetta (KL)

Biostatistics Department, Boston University School of Public Health, Boston, MA, USA.

Toshiko Tanaka (T)

Longitudinal Study Section, Translational Gerontology branch, National Institute on Aging, Baltimore, MD, USA.

Mary K Wojczynski (MK)

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.

Ryan Cvejkus (R)

University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA.

Maria Nethander (M)

Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Sahar Ghasemi (S)

Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.
Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

Jingyun Yang (J)

Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.

M Carola Zillikens (MC)

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.

Stefan Walter (S)

Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain.
CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.

Kamil Sicinski (K)

Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA.

Erika Kague (E)

School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.

Cheryl L Ackert-Bicknell (CL)

Department of Orthopedics, University of Colorado, Aurora, CO, USA.

Dan E Arking (DE)

McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

B Gwen Windham (BG)

Department of Medicine/Geriatrics, University of Mississippi School of Medicine, Jackson, MS, USA.

Eric Boerwinkle (E)

Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.

Megan L Grove (ML)

Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Misa Graff (M)

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27516, USA.

Dominik Spira (D)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany.

Ilja Demuth (I)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany.
Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.

Nathalie van der Velde (N)

Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Lisette C P G M de Groot (LCPGM)

Wageningen University, Division of Human Nutrition, PO-box 17, 6700 AA, Wageningen, The Netherlands.

Bruce M Psaty (BM)

Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health services, University of Washington, Seattle, WA, USA.
Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.

Michelle C Odden (MC)

Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.

Alison E Fohner (AE)

Department of Epidemiology and Institute of Public Genetics, University of Washington, Seattle, WA, USA.

Claudia Langenberg (C)

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.

Nicholas J Wareham (NJ)

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.

Stefania Bandinelli (S)

Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy.

Natasja M van Schoor (NM)

Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.

Martijn Huisman (M)

Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.

Qihua Tan (Q)

Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, Odense, Denmark.

Joseph Zmuda (J)

University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA.

Dan Mellström (D)

Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Magnus Karlsson (M)

Clinical and Molecular Osteoporosis Research Unit, Department of Orthopedics and Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden.

David A Bennett (DA)

Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.

Aron S Buchman (AS)

Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.

Philip L De Jager (PL)

Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA.
Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.

Andre G Uitterlinden (AG)

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.

Uwe Völker (U)

Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.

Thomas Kocher (T)

Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany.

Alexander Teumer (A)

Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

Leocadio Rodriguéz-Mañas (L)

CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
Department of Geriatrics, Getafe University Hospital, Getafe, Spain.

Francisco J García (FJ)

CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
Department of Geriatrics, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain.

José A Carnicero (JA)

CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.

Pamela Herd (P)

Professor of Public Policy, Georgetown University, Washington, DC, USA.

Lars Bertram (L)

Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany.

Claes Ohlsson (C)

Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.

Joanne M Murabito (JM)

Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA.

David Melzer (D)

Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.

George A Kuchel (GA)

Center on Aging, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.

Luigi Ferrucci (L)

National Institute on Aging, Baltimore, MD, USA.

David Karasik (D)

Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.
Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.

Fernando Rivadeneira (F)

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.

Douglas P Kiel (DP)

Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Boston, MA, USA.

Luke C Pilling (LC)

Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK. L.Pilling@exeter.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH