IRGM1 links mitochondrial quality control to autoimmunity.
Animals
Autoimmune Diseases
/ genetics
Autoimmunity
Cells, Cultured
Fibroblasts
/ immunology
GTP-Binding Proteins
/ deficiency
Gene Expression Regulation
Macrophages
/ immunology
Membrane Glycoproteins
/ genetics
Membrane Proteins
/ genetics
Mice, Inbred C57BL
Mitochondria
/ genetics
Mitophagy
Nucleotidyltransferases
/ genetics
Signal Transduction
Toll-Like Receptor 7
/ genetics
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
27
08
2019
accepted:
18
12
2020
pubmed:
30
1
2021
medline:
27
4
2021
entrez:
29
1
2021
Statut:
ppublish
Résumé
Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon. Here, we show that mice lacking the GTPase IRGM1 (IRGM homolog) exhibited a type I interferonopathy with autoimmune features. Irgm1 deletion impaired the execution of mitophagy with cell-specific consequences. In fibroblasts, mitochondrial DNA soiling of the cytosol induced cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent type I interferon, whereas in macrophages, lysosomal Toll-like receptor 7 was activated. In vivo, Irgm1
Identifiants
pubmed: 33510463
doi: 10.1038/s41590-020-00859-0
pii: 10.1038/s41590-020-00859-0
pmc: PMC7906953
mid: NIHMS1656423
doi:
Substances chimiques
Ifi1 protein, mouse
0
Membrane Glycoproteins
0
Membrane Proteins
0
Sting1 protein, mouse
0
Tlr7 protein, mouse
0
Toll-Like Receptor 7
0
Nucleotidyltransferases
EC 2.7.7.-
cGAS protein, mouse
EC 2.7.7.-
GTP-Binding Proteins
EC 3.6.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
312-321Subventions
Organisme : Intramural NIH HHS
ID : Z01 ES102005
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA ES103286
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI135398
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG060456
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI145929
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI148243
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG063373
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Thorlacius, G. E., Wahren-Herlenius, M. & Ronnblom, L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren’s syndrome. Curr. Opin. Rheumatol. 30, 471–481 (2018).
pubmed: 29889694
doi: 10.1097/BOR.0000000000000524
Crow, Y. J. & Manel, N. Aicardi–Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).
pubmed: 26052098
doi: 10.1038/nri3850
Rodero, M. P. & Crow, Y. J. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213, 2527–2538 (2016).
pubmed: 27821552
pmcid: 5110029
doi: 10.1084/jem.20161596
West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).
pubmed: 25642965
pmcid: 4409480
doi: 10.1038/nature14156
Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).
pubmed: 25525875
pmcid: 4272443
doi: 10.1016/j.cell.2014.11.037
Gkirtzimanaki, K. et al. IFNα impairs autophagic degradation of mtDNA promoting autoreactivity of SLE monocytes in a STING-dependent fashion. Cell Rep. 25, 921–933.e5 (2018).
pubmed: 30355498
pmcid: 6218203
doi: 10.1016/j.celrep.2018.09.001
Monteith, A. J. et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 113, E2142–E2151 (2016).
pubmed: 27035940
pmcid: 4839468
doi: 10.1073/pnas.1513943113
Caza, T. N. et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. 73, 1888–1897 (2014).
pubmed: 23897774
doi: 10.1136/annrheumdis-2013-203794
Perl, A., Gergely, P. Jr. & Banki, K. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus. Int. Rev. Immunol. 23, 293–313 (2004).
pubmed: 15204090
doi: 10.1080/08830180490452576
Pilla-Moffett, D., Barber, M. F., Taylor, G. A. & Coers, J. Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 428, 3495–3513 (2016).
pubmed: 27181197
pmcid: 5010443
doi: 10.1016/j.jmb.2016.04.032
Haldar, A. K. et al. IRG and GBP host resistance factors target aberrant, ‘non-self’ vacuoles characterized by the missing of ‘self’ IRGM proteins. PLoS Pathog. 9, e1003414 (2013).
pubmed: 23785284
pmcid: 3681737
doi: 10.1371/journal.ppat.1003414
Zhao, Y. O., Könen-Waisman, S., Taylor, G. A., Martens, S. & Howard, J. C. Localisation and mislocalisation of the interferon-inducible immunity-related GTPase, Irgm1 (LRG-47) in mouse cells. PLoS ONE 5, e8648 (2010).
pubmed: 20072621
pmcid: 2799677
doi: 10.1371/journal.pone.0008648
Maric-Biresev, J. et al. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biol. 14, 33 (2016).
pubmed: 27098192
pmcid: 4837601
doi: 10.1186/s12915-016-0255-4
Traver, M. K. et al. Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy. J. Biol. Chem. 286, 30471–30480 (2011).
pubmed: 21757726
pmcid: 3162407
doi: 10.1074/jbc.M111.251967
Azzam, K. M. et al. Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces. JCI Insight 2, e91914 (2017).
pmcid: 5621910
doi: 10.1172/jci.insight.91914
Zhou, X. J. et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis. 70, 1330–1337 (2011).
pubmed: 21622776
doi: 10.1136/ard.2010.140111
Xia, Q. et al. Autophagy-related IRGM genes confer susceptibility to ankylosing spondylitis in a Chinese female population: a case–control study. Genes Immun. 18, 42–47 (2017).
pubmed: 28031552
doi: 10.1038/gene.2016.48
Yao, Q. M. et al. Polymorphisms in autophagy-related gene IRGM are associated with susceptibility to autoimmune thyroid diseases. Biomed. Res. Int. 2018, 7959707 (2018).
pubmed: 29992164
pmcid: 6016217
doi: 10.1155/2018/7959707
Nocturne, G. & Mariette, X. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nat. Rev. Rheumatol. 9, 544–556 (2013).
pubmed: 23857130
doi: 10.1038/nrrheum.2013.110
Feng, C. G., Weksberg, D. C., Taylor, G. A., Sher, A. & Goodell, M. A. The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2, 83–89 (2008).
pubmed: 18371424
pmcid: 2278017
doi: 10.1016/j.stem.2007.10.007
Matsuzawa, T. et al. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 189, 813–818 (2012).
pubmed: 22675202
doi: 10.4049/jimmunol.1102041
King, K. Y. et al. Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood 118, 1525–1533 (2011).
pubmed: 21633090
pmcid: 3156044
doi: 10.1182/blood-2011-01-328682
West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).
pubmed: 28393922
pmcid: 7289178
doi: 10.1038/nri.2017.21
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).
pubmed: 21151103
doi: 10.1038/ni.1980
Ma, F. et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol. 194, 1545–1554 (2015).
pubmed: 25609843
doi: 10.4049/jimmunol.1402066
Hamacher-Brady, A. & Brady, N. R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol. Life Sci. 73, 775–795 (2016).
pubmed: 26611876
doi: 10.1007/s00018-015-2087-8
Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18, 1042–1052 (2011).
pubmed: 21867919
doi: 10.1016/j.chembiol.2011.05.013
Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).
pubmed: 16888103
doi: 10.1126/science.1129577
Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017).
pubmed: 28103219
doi: 10.1038/nchembio.2287
McWilliams, T. G. et al. Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol. 8, 180108 (2018).
pubmed: 30404819
pmcid: 6282074
doi: 10.1098/rsob.180108
Di Malta, C., Cinque, L. & Settembre, C. Transcriptional regulation of autophagy: mechanisms and diseases. Front. Cell Dev. Biol. 7, 114 (2019).
pubmed: 31312633
pmcid: 6614182
doi: 10.3389/fcell.2019.00114
Trudeau, K. M. et al. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity. J. Cell Biol. 214, 25–34 (2016).
pubmed: 27377248
pmcid: 4932370
doi: 10.1083/jcb.201511042
He, L., Weber, K. J., Diwan, A. & Schilling, J. D. Inhibition of mTOR reduces lipotoxic cell death in primary macrophages through an autophagy-independent mechanism. J. Leukoc. Biol. 100, 1113–1124 (2016).
pubmed: 27312848
pmcid: 5069097
doi: 10.1189/jlb.3A1015-463R
Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).
pubmed: 22535248
pmcid: 3378041
doi: 10.1038/nature10992
Rodríguez-Nuevo, A. et al. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J. 37, e96553 (2018).
pubmed: 29632021
pmcid: 5978453
doi: 10.15252/embj.201796553
Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).
pubmed: 18820679
pmcid: 2596276
doi: 10.1038/nature07405
Ewald, S. E. et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208, 643–651 (2011).
pubmed: 21402738
pmcid: 3135342
doi: 10.1084/jem.20100682
Kruger, A. et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 16, 1656–1663 (2015).
pubmed: 26545385
pmcid: 4687425
doi: 10.15252/embr.201540861
Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).
pubmed: 26098576
pmcid: 4612372
doi: 10.1038/ncb3192
Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).
pubmed: 27091841
pmcid: 4854735
doi: 10.1084/jem.20151876
Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).
pubmed: 31113940
pmcid: 6529454
doi: 10.1038/s41467-019-08620-4
Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad. Sci. USA 112, E710–E717 (2015).
pubmed: 25646421
pmcid: 4343138
doi: 10.1073/pnas.1420217112
Shi, B. et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy 13, 285–301 (2017).
pubmed: 27929705
doi: 10.1080/15548627.2016.1261238
Vitner, E. B. et al. Induction of the type I interferon response in neurological forms of Gaucher disease. J. Neuroinflammation 13, 104 (2016).
pubmed: 27175482
pmcid: 4866012
doi: 10.1186/s12974-016-0570-2
Borralho, P. M., Rodrigues, C. M. & Steer, C. J. microRNAs in mitochondria: an unexplored niche. Adv. Exp. Med. Biol. 887, 31–51 (2015).
pubmed: 26662985
doi: 10.1007/978-3-319-22380-3_3
Gao, S. et al. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 38, 41–47 (2018).
pubmed: 28802668
doi: 10.1016/j.mito.2017.08.002
Chauhan, S., Mandell, M. A. & Deretic, V. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol. Cell 58, 507–521 (2015).
pubmed: 25891078
pmcid: 4427528
doi: 10.1016/j.molcel.2015.03.020
Kumar, S. et al. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J. Cell Biol. 217, 997–1013 (2018).
pubmed: 29420192
pmcid: 5839791
doi: 10.1083/jcb.201708039
Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).
pubmed: 30135585
pmcid: 7362342
doi: 10.1038/s41586-018-0448-9
Ajayi, T. A. et al. Crohn’s disease IRGM risk alleles are associated with altered gene expression in human tissues. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G95–G105 (2019).
pubmed: 30335469
doi: 10.1152/ajpgi.00196.2018
Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ–inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med. 194, 181–188 (2001).
pubmed: 11457893
pmcid: 2193451
doi: 10.1084/jem.194.2.181
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).
pubmed: 11130078
doi: 10.1038/35047123
Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).
pubmed: 27096368
pmcid: 4860026
doi: 10.1038/nature17950