IRGM1 links mitochondrial quality control to autoimmunity.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
03 2021
Historique:
received: 27 08 2019
accepted: 18 12 2020
pubmed: 30 1 2021
medline: 27 4 2021
entrez: 29 1 2021
Statut: ppublish

Résumé

Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon. Here, we show that mice lacking the GTPase IRGM1 (IRGM homolog) exhibited a type I interferonopathy with autoimmune features. Irgm1 deletion impaired the execution of mitophagy with cell-specific consequences. In fibroblasts, mitochondrial DNA soiling of the cytosol induced cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent type I interferon, whereas in macrophages, lysosomal Toll-like receptor 7 was activated. In vivo, Irgm1

Identifiants

pubmed: 33510463
doi: 10.1038/s41590-020-00859-0
pii: 10.1038/s41590-020-00859-0
pmc: PMC7906953
mid: NIHMS1656423
doi:

Substances chimiques

Ifi1 protein, mouse 0
Membrane Glycoproteins 0
Membrane Proteins 0
Sting1 protein, mouse 0
Tlr7 protein, mouse 0
Toll-Like Receptor 7 0
Nucleotidyltransferases EC 2.7.7.-
cGAS protein, mouse EC 2.7.7.-
GTP-Binding Proteins EC 3.6.1.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

312-321

Subventions

Organisme : Intramural NIH HHS
ID : Z01 ES102005
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA ES103286
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI135398
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG060456
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI145929
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI148243
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG063373
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Thorlacius, G. E., Wahren-Herlenius, M. & Ronnblom, L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren’s syndrome. Curr. Opin. Rheumatol. 30, 471–481 (2018).
pubmed: 29889694 doi: 10.1097/BOR.0000000000000524
Crow, Y. J. & Manel, N. Aicardi–Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).
pubmed: 26052098 doi: 10.1038/nri3850
Rodero, M. P. & Crow, Y. J. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213, 2527–2538 (2016).
pubmed: 27821552 pmcid: 5110029 doi: 10.1084/jem.20161596
West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).
pubmed: 25642965 pmcid: 4409480 doi: 10.1038/nature14156
Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).
pubmed: 25525875 pmcid: 4272443 doi: 10.1016/j.cell.2014.11.037
Gkirtzimanaki, K. et al. IFNα impairs autophagic degradation of mtDNA promoting autoreactivity of SLE monocytes in a STING-dependent fashion. Cell Rep. 25, 921–933.e5 (2018).
pubmed: 30355498 pmcid: 6218203 doi: 10.1016/j.celrep.2018.09.001
Monteith, A. J. et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 113, E2142–E2151 (2016).
pubmed: 27035940 pmcid: 4839468 doi: 10.1073/pnas.1513943113
Caza, T. N. et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. 73, 1888–1897 (2014).
pubmed: 23897774 doi: 10.1136/annrheumdis-2013-203794
Perl, A., Gergely, P. Jr. & Banki, K. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus. Int. Rev. Immunol. 23, 293–313 (2004).
pubmed: 15204090 doi: 10.1080/08830180490452576
Pilla-Moffett, D., Barber, M. F., Taylor, G. A. & Coers, J. Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 428, 3495–3513 (2016).
pubmed: 27181197 pmcid: 5010443 doi: 10.1016/j.jmb.2016.04.032
Haldar, A. K. et al. IRG and GBP host resistance factors target aberrant, ‘non-self’ vacuoles characterized by the missing of ‘self’ IRGM proteins. PLoS Pathog. 9, e1003414 (2013).
pubmed: 23785284 pmcid: 3681737 doi: 10.1371/journal.ppat.1003414
Zhao, Y. O., Könen-Waisman, S., Taylor, G. A., Martens, S. & Howard, J. C. Localisation and mislocalisation of the interferon-inducible immunity-related GTPase, Irgm1 (LRG-47) in mouse cells. PLoS ONE 5, e8648 (2010).
pubmed: 20072621 pmcid: 2799677 doi: 10.1371/journal.pone.0008648
Maric-Biresev, J. et al. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biol. 14, 33 (2016).
pubmed: 27098192 pmcid: 4837601 doi: 10.1186/s12915-016-0255-4
Traver, M. K. et al. Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy. J. Biol. Chem. 286, 30471–30480 (2011).
pubmed: 21757726 pmcid: 3162407 doi: 10.1074/jbc.M111.251967
Azzam, K. M. et al. Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces. JCI Insight 2, e91914 (2017).
pmcid: 5621910 doi: 10.1172/jci.insight.91914
Zhou, X. J. et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis. 70, 1330–1337 (2011).
pubmed: 21622776 doi: 10.1136/ard.2010.140111
Xia, Q. et al. Autophagy-related IRGM genes confer susceptibility to ankylosing spondylitis in a Chinese female population: a case–control study. Genes Immun. 18, 42–47 (2017).
pubmed: 28031552 doi: 10.1038/gene.2016.48
Yao, Q. M. et al. Polymorphisms in autophagy-related gene IRGM are associated with susceptibility to autoimmune thyroid diseases. Biomed. Res. Int. 2018, 7959707 (2018).
pubmed: 29992164 pmcid: 6016217 doi: 10.1155/2018/7959707
Nocturne, G. & Mariette, X. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nat. Rev. Rheumatol. 9, 544–556 (2013).
pubmed: 23857130 doi: 10.1038/nrrheum.2013.110
Feng, C. G., Weksberg, D. C., Taylor, G. A., Sher, A. & Goodell, M. A. The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2, 83–89 (2008).
pubmed: 18371424 pmcid: 2278017 doi: 10.1016/j.stem.2007.10.007
Matsuzawa, T. et al. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 189, 813–818 (2012).
pubmed: 22675202 doi: 10.4049/jimmunol.1102041
King, K. Y. et al. Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood 118, 1525–1533 (2011).
pubmed: 21633090 pmcid: 3156044 doi: 10.1182/blood-2011-01-328682
West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).
pubmed: 28393922 pmcid: 7289178 doi: 10.1038/nri.2017.21
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).
pubmed: 21151103 doi: 10.1038/ni.1980
Ma, F. et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol. 194, 1545–1554 (2015).
pubmed: 25609843 doi: 10.4049/jimmunol.1402066
Hamacher-Brady, A. & Brady, N. R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol. Life Sci. 73, 775–795 (2016).
pubmed: 26611876 doi: 10.1007/s00018-015-2087-8
Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18, 1042–1052 (2011).
pubmed: 21867919 doi: 10.1016/j.chembiol.2011.05.013
Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).
pubmed: 16888103 doi: 10.1126/science.1129577
Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017).
pubmed: 28103219 doi: 10.1038/nchembio.2287
McWilliams, T. G. et al. Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol. 8, 180108 (2018).
pubmed: 30404819 pmcid: 6282074 doi: 10.1098/rsob.180108
Di Malta, C., Cinque, L. & Settembre, C. Transcriptional regulation of autophagy: mechanisms and diseases. Front. Cell Dev. Biol. 7, 114 (2019).
pubmed: 31312633 pmcid: 6614182 doi: 10.3389/fcell.2019.00114
Trudeau, K. M. et al. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity. J. Cell Biol. 214, 25–34 (2016).
pubmed: 27377248 pmcid: 4932370 doi: 10.1083/jcb.201511042
He, L., Weber, K. J., Diwan, A. & Schilling, J. D. Inhibition of mTOR reduces lipotoxic cell death in primary macrophages through an autophagy-independent mechanism. J. Leukoc. Biol. 100, 1113–1124 (2016).
pubmed: 27312848 pmcid: 5069097 doi: 10.1189/jlb.3A1015-463R
Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).
pubmed: 22535248 pmcid: 3378041 doi: 10.1038/nature10992
Rodríguez-Nuevo, A. et al. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J. 37, e96553 (2018).
pubmed: 29632021 pmcid: 5978453 doi: 10.15252/embj.201796553
Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).
pubmed: 18820679 pmcid: 2596276 doi: 10.1038/nature07405
Ewald, S. E. et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208, 643–651 (2011).
pubmed: 21402738 pmcid: 3135342 doi: 10.1084/jem.20100682
Kruger, A. et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 16, 1656–1663 (2015).
pubmed: 26545385 pmcid: 4687425 doi: 10.15252/embr.201540861
Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).
pubmed: 26098576 pmcid: 4612372 doi: 10.1038/ncb3192
Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).
pubmed: 27091841 pmcid: 4854735 doi: 10.1084/jem.20151876
Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).
pubmed: 31113940 pmcid: 6529454 doi: 10.1038/s41467-019-08620-4
Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad. Sci. USA 112, E710–E717 (2015).
pubmed: 25646421 pmcid: 4343138 doi: 10.1073/pnas.1420217112
Shi, B. et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy 13, 285–301 (2017).
pubmed: 27929705 doi: 10.1080/15548627.2016.1261238
Vitner, E. B. et al. Induction of the type I interferon response in neurological forms of Gaucher disease. J. Neuroinflammation 13, 104 (2016).
pubmed: 27175482 pmcid: 4866012 doi: 10.1186/s12974-016-0570-2
Borralho, P. M., Rodrigues, C. M. & Steer, C. J. microRNAs in mitochondria: an unexplored niche. Adv. Exp. Med. Biol. 887, 31–51 (2015).
pubmed: 26662985 doi: 10.1007/978-3-319-22380-3_3
Gao, S. et al. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 38, 41–47 (2018).
pubmed: 28802668 doi: 10.1016/j.mito.2017.08.002
Chauhan, S., Mandell, M. A. & Deretic, V. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol. Cell 58, 507–521 (2015).
pubmed: 25891078 pmcid: 4427528 doi: 10.1016/j.molcel.2015.03.020
Kumar, S. et al. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J. Cell Biol. 217, 997–1013 (2018).
pubmed: 29420192 pmcid: 5839791 doi: 10.1083/jcb.201708039
Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).
pubmed: 30135585 pmcid: 7362342 doi: 10.1038/s41586-018-0448-9
Ajayi, T. A. et al. Crohn’s disease IRGM risk alleles are associated with altered gene expression in human tissues. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G95–G105 (2019).
pubmed: 30335469 doi: 10.1152/ajpgi.00196.2018
Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ–inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med. 194, 181–188 (2001).
pubmed: 11457893 pmcid: 2193451 doi: 10.1084/jem.194.2.181
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).
pubmed: 11130078 doi: 10.1038/35047123
Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).
pubmed: 27096368 pmcid: 4860026 doi: 10.1038/nature17950

Auteurs

Prashant Rai (P)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA. prashant.rai@nih.gov.

Kyathanahalli S Janardhan (KS)

Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA.

Julie Meacham (J)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.

Jennifer H Madenspacher (JH)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.

Wan-Chi Lin (WC)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.

Peer W F Karmaus (PWF)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.

Jennifer Martinez (J)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.

Quan-Zhen Li (QZ)

Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Mei Yan (M)

Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Jialiu Zeng (J)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Mark W Grinstaff (MW)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Orian S Shirihai (OS)

Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Gregory A Taylor (GA)

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
Department of Immunology, Duke University Medical Center, Durham, NC, USA.
Division of Geriatrics, Department of Medicine, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA.
Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC, USA.

Michael B Fessler (MB)

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA. fesslerm@niehs.nih.gov.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH