In vivo dynamics and adaptation of HTLV-1-infected clones under different clinical conditions.
Adult
Animals
CD8-Positive T-Lymphocytes
/ immunology
Clone Cells
/ immunology
Dendritic Cells
/ immunology
Female
Gene Products, tax
/ immunology
HTLV-I Infections
/ immunology
Hematopoietic Stem Cell Transplantation
Human T-lymphotropic virus 1
/ immunology
Humans
Leukemia-Lymphoma, Adult T-Cell
/ immunology
Liver Transplantation
/ adverse effects
Macaca fuscata
Male
Middle Aged
Natural Killer T-Cells
/ immunology
Proviruses
T-Lymphocytes
/ cytology
Viral Load
Virus Replication
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
18
09
2020
accepted:
04
01
2021
revised:
11
02
2021
pubmed:
2
2
2021
medline:
24
6
2021
entrez:
1
2
2021
Statut:
epublish
Résumé
Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes. However, the detailed mechanisms that control clonal expansion of infected cells remain to be elucidated. In this study, we show that newly infected clones were strongly suppressed, and then stable clones were selected, in a patient who was infected by live liver transplantation from a seropositive donor. Conversely, most HTLV-1+ clones persisted in patients who received hematopoietic stem cell transplantation from seropositive donors. To clarify the role of cell-mediated immunity in this clonal selection, we suppressed CD8+ or CD16+ cells in simian T-cell leukemia virus type 1 (STLV-1)-infected Japanese macaques. Decreasing CD8+ T cells had marginal effects on proviral load (PVL). However, the clonality of infected cells changed after depletion of CD8+ T cells. Consistent with this, PVL at 24 hours in vitro culture increased, suggesting that infected cells with higher proliferative ability increased. Analyses of provirus in a patient who received Tax-peptide pulsed dendritic cells indicate that enhanced anti-Tax immunity did not result in a decreased PVL although it inhibited recurrence of ATL. We postulate that in vivo selection, due to the immune response, cytopathic effects of HTLV-1 and intrinsic attributes of infected cells, results in the emergence of clones of HTLV-1-infected T cells that proliferate with minimized HTLV-1 antigen expression.
Identifiants
pubmed: 33524072
doi: 10.1371/journal.ppat.1009271
pii: PPATHOGENS-D-20-02072
pmc: PMC7877780
doi:
Substances chimiques
Gene Products, tax
0
tax protein, Human T-lymphotrophic virus 1
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009271Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Curr Opin Virol. 2013 Dec;3(6):684-91
pubmed: 24060211
Viruses. 2016 Jun 16;8(6):
pubmed: 27322308
PLoS Pathog. 2010 Sep 23;6(9):e1001117
pubmed: 20886101
Curr Opin Virol. 2015 Oct;14:93-100
pubmed: 26414684
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1269-E1278
pubmed: 29358408
J Virol. 2002 Sep;76(18):9389-97
pubmed: 12186921
F1000Res. 2019 Feb 28;8:
pubmed: 30854194
Nature. 1990 Nov 15;348(6298):245-8
pubmed: 2146511
Blood. 2001 Feb 15;97(4):987-93
pubmed: 11159527
J Virol. 2007 Jun;81(11):5714-23
pubmed: 17344291
Cell. 1987 Jan 30;48(2):343-50
pubmed: 3026643
J Infect Dis. 2011 Feb 15;203(4):529-36
pubmed: 21208912
Immunology. 2008 Jun;124(2):215-22
pubmed: 18201184
Blood. 2011 Sep 1;118(9):2483-91
pubmed: 21505188
J Gen Virol. 2009 Aug;90(Pt 8):1806-1811
pubmed: 19423550
Blood. 1991 Jul 1;78(1):169-74
pubmed: 1676916
Am J Pathol. 1999 Jun;154(6):1923-32
pubmed: 10362819
Blood. 2010 Oct 21;116(16):2994-3003
pubmed: 20634377
PLoS One. 2012;7(8):e42226
pubmed: 22916124
Blood. 2015 Aug 27;126(9):1095-105
pubmed: 26063164
PLoS Pathog. 2013;9(10):e1003687
pubmed: 24098130
Retrovirology. 2005 Oct 22;2:64
pubmed: 16242045
Int J Cancer. 2004 Apr 20;109(4):559-67
pubmed: 14991578
EMBO J. 2006 Apr 19;25(8):1741-52
pubmed: 16601696
Nat Rev Cancer. 2007 Apr;7(4):270-80
pubmed: 17384582
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3054-9
pubmed: 26929370
PLoS Pathog. 2019 Nov 18;15(11):e1008164
pubmed: 31738810
Cancer Res. 2015 Oct 1;75(19):4143-52
pubmed: 26383166
Retrovirology. 2016 Jan 08;13:3
pubmed: 26745892
Wellcome Open Res. 2017 Sep 22;2:87
pubmed: 29062917
Annu Rev Virol. 2019 Sep 29;6(1):365-385
pubmed: 31283437
Eur J Immunol. 2009 Jul;39(7):1700-12
pubmed: 19582737
Int Immunol. 1991 Aug;3(8):761-7
pubmed: 1911545
Blood. 2000 Feb 15;95(4):1386-92
pubmed: 10666215
J Virol. 2010 Jul;84(14):7278-87
pubmed: 20463074
PLoS Pathog. 2017 Nov 29;13(11):e1006722
pubmed: 29186194
Blood. 2011 Mar 17;117(11):3113-22
pubmed: 21228324
PLoS Pathog. 2014 Apr 03;10(4):e1004040
pubmed: 24699669
J Biol Chem. 1998 Aug 28;273(35):22382-8
pubmed: 9712859
Blood. 1996 Oct 15;88(8):3065-73
pubmed: 8874205
Elife. 2018 Jun 26;7:
pubmed: 29941091
Retrovirology. 2013 Oct 24;10:118
pubmed: 24156738
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):720-5
pubmed: 16407133
Br J Haematol. 2015 May;169(3):356-67
pubmed: 25612920
PLoS Pathog. 2011 Oct;7(10):e1002270
pubmed: 22022261
Retrovirology. 2019 Aug 22;16(1):23
pubmed: 31438973
Cancer Sci. 2019 Mar;110(3):849-857
pubmed: 30666755
Retrovirology. 2020 Jan 8;17(1):2
pubmed: 31915026
Philos Trans R Soc Lond B Biol Sci. 2017 Oct 19;372(1732):
pubmed: 28893939