Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: a systematic review and network meta-analysis.
Choline
Comparative imaging
Network meta-analysis
PET/CT
PSMA
Positron emission tomography
Radiotracers
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
16
12
2020
accepted:
18
01
2021
pubmed:
8
2
2021
medline:
24
7
2021
entrez:
7
2
2021
Statut:
ppublish
Résumé
Many radiotracers are currently available for the detection of recurrent prostate cancer (rPC), yet many have not been compared head-to-head in comparative imaging studies. There is therefore an unmet need for evidence synthesis to guide evidence-based decisions in the selection of radiotracers. The objective of this study was therefore to assess the detection rate of various radiotracers for the rPC. The PUBMED, EMBASE, and the EU and NIH trials databases were searched without date or language restriction for comparative imaging tracers for 13 radiotracers of principal interest. Key search terms included 18F-PSMA-1007, 18F-DCPFyl, 68Ga-PSMA-11, 18F-PSMA-11, 68Ga-PSMA-I&T, 68Ga-THP-PSMA, 64Cu-PSMA-617, 18F-JK-PSMA-7, 18F-Fluciclovine, 18F-FABC, 18F-Choline, 11C-Choline, and 68Ga-RM2. Studies reporting comparative imaging data in humans in rPC were selected. Single armed studies and matched pair analyses were excluded. Twelve studies with eight radiotracers were eligible for inclusion. Two independent reviewers screened all studies (using the PRISMA-NMA statement) for inclusion criteria, extracted data, and assessed risk of bias (using the QUADAS-2 tool). A network meta-analysis was performed using Markov-Chain Monte Carlo Bayesian analysis to obtain estimated detection rate odds ratios for each tracer combination. A majority of studies were judged to be at risk of publication bias. With the exception of 18F-PSMA-1007, little difference in terms of detection rate was revealed between the three most commonly used PSMA-radiotracers ( Differences in patient-level detection rates were observed between PSMA- and choline-radiotracers. However, there is currently insufficient evidence to favour one of the four routinely used PSMA-radioligands (PSMA-11, PSMA-1007, PSMA-I&T, and DCFPyl) over another owing to the limited evidence base and risk of publication bias revealed by our systematic review. A further limitation was lack of reporting on diagnostic accuracy, which might favour radiotracers with low specificity in an analysis restricted only to detection rate. The NMA derived can be used to inform the design of future clinical trials and highlight areas where current evidence is weak.
Identifiants
pubmed: 33550425
doi: 10.1007/s00259-021-05210-9
pii: 10.1007/s00259-021-05210-9
pmc: PMC8263438
doi:
Substances chimiques
(18)F-PSMA-11
0
18F-JK-PSMA-7
0
Copper Radioisotopes
0
Copper-64
0
Glutarates
0
Phosphinic Acids
0
Pyridines
0
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2978-2989Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Type : CommentIn
Références
Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using Carbon-11-choline. J Nucl Med. 1998;39:990–5.
pubmed: 9627331
Habl G, Sauter K, Schiller K, Dewes S, Maurer T, Eiber M, et al. 68Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: individualized medicine or new standard in salvage treatment. Prostate. 2017;77:920–7. https://doi.org/10.1002/pros.23347 .
doi: 10.1002/pros.23347
pubmed: 28317152
Afaq A, Ell PJ, Bomanji JB. Is it time to fund routine NHS usage of PSMA PET-CT? Nucl Med Commun. 2019;40:975–9. https://doi.org/10.1097/mnm.0000000000001066 .
doi: 10.1097/mnm.0000000000001066
pubmed: 31365499
Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. The Lancet Oncology. 2019;20:1286–94. https://doi.org/10.1016/S1470-2045(19)30415-2 .
doi: 10.1016/S1470-2045(19)30415-2
pubmed: 31375469
pmcid: 7469487
Andriole GL. What is the best PET target for early biochemical recurrence of prostate cancer? The Lancet Oncology. 2019;20:e608. https://doi.org/10.1016/S1470-2045(19)30586-8 .
doi: 10.1016/S1470-2045(19)30586-8
pubmed: 31674313
Fossati N, Gandaglia G, Briganti A, Montorsi F. The emerging role of PET-CT scan after radical prostatectomy: still a long way to go. The Lancet Oncology. 2019;20:1193–5. https://doi.org/10.1016/S1470-2045(19)30501-7 .
doi: 10.1016/S1470-2045(19)30501-7
pubmed: 31375470
Parent EE, Schuster DM. Update on (18)F-fluciclovine PET for prostate cancer imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2018;59:733–9. https://doi.org/10.2967/jnumed.117.204032 .
doi: 10.2967/jnumed.117.204032
Bucknor MD, Lichtensztajn DY, Lin TK, Borno HT, Gomez SL, Hope TA. Disparities in PET imaging for prostate cancer at a tertiary academic medical center. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2020. doi: https://doi.org/10.2967/jnumed.120.251751 .
Sathekge M, Lengana T, Maes A, Vorster M, Zeevaart J, Lawal I, et al. (68)Ga-PSMA-11 PET/CT in primary staging of prostate carcinoma: preliminary results on differences between black and white South-Africans. Eur J Nucl Med Mol Imaging. 2018;45:226–34. https://doi.org/10.1007/s00259-017-3852-8 .
doi: 10.1007/s00259-017-3852-8
pubmed: 29101444
Tan N, Oyoyo U, Bavadian N, Ferguson N, Mukkamala A, Calais J, et al. PSMA-targeted radiotracers versus (18)F Fluciclovine for the detection of prostate cancer biochemical recurrence after definitive therapy: a systematic review and meta-analysis. Radiology. 2020;296:44–55. https://doi.org/10.1148/radiol.2020191689 .
doi: 10.1148/radiol.2020191689
pubmed: 32396045
Hope TA, Goodman JZ, Allen IE, Calais J, Fendler WP, Carroll PR. Metaanalysis of (68)Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2019;60:786–93. https://doi.org/10.2967/jnumed.118.219501 .
doi: 10.2967/jnumed.118.219501
Tan N, Bavadian N, Calais J, Oyoyo U, Kim J, Turkbey IB, et al. Imaging of prostate specific membrane antigen targeted radiotracers for the detection of prostate cancer biochemical recurrence after definitive therapy: a systematic review and meta-analysis. J Urol. 2019;202:231–40. https://doi.org/10.1097/JU.0000000000000198 .
doi: 10.1097/JU.0000000000000198
pubmed: 30829130
Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77:403–17. https://doi.org/10.1016/j.eururo.2019.01.049 .
doi: 10.1016/j.eururo.2019.01.049
pubmed: 30773328
Treglia G, Annunziata S, Pizzuto DA, Giovanella L, Prior JO, Ceriani L. Detection rate of (18)F-labeled PSMA PET/CT in biochemical recurrent prostate cancer: a systematic review and a meta-analysis. Cancers. 2019;11. https://doi.org/10.3390/cancers11050710 .
Ioannidis J. Next-generation systematic reviews: prospective meta-analysis, individual-level data, networks and umbrella reviews. Br J Sports Med. 2017;51:1456. https://doi.org/10.1136/bjsports-2017-097621 .
doi: 10.1136/bjsports-2017-097621
pubmed: 28223307
The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Ann Intern Med. 2015;162:777–84. doi: https://doi.org/10.7326/m14-2385 .
Afshar-Oromieh AA-O, Debus N, Uhrig M, Hope TA, Evans MJ, Holland-Letz T, et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer.
Brown S, Hutton B, Clifford T, Coyle D, Grima D, Wells G, et al. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL. Systematic Reviews. 2014;3:110. https://doi.org/10.1186/2046-4053-3-110 .
doi: 10.1186/2046-4053-3-110
pubmed: 25267416
pmcid: 4195340
Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10:325–37. https://doi.org/10.1023/A:1008929526011 .
doi: 10.1023/A:1008929526011
Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Mak. 2012;33:607–17. https://doi.org/10.1177/0272989X12458724 .
doi: 10.1177/0272989X12458724
Prior Distributions. Bayesian approaches to clinical trials and health-care evaluation. 2003:139–80. doi: https://doi.org/10.1002/0470092602.ch5 .
Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane database of systematic reviews. Int J Epidemiol. 2012;41:818–27. https://doi.org/10.1093/ije/dys041 .
doi: 10.1093/ije/dys041
pubmed: 22461129
pmcid: 3396310
Seide SE, Röver C, Friede T. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies. BMC Med Res Methodol. 2019;19:16. https://doi.org/10.1186/s12874-018-0618-3 .
doi: 10.1186/s12874-018-0618-3
pubmed: 30634920
pmcid: 6330405
Mbuagbaw L, Rochwerg B, Jaeschke R, Heels-Andsell D, Alhazzani W, Thabane L, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Systematic Reviews. 2017;6:79. https://doi.org/10.1186/s13643-017-0473-z .
doi: 10.1186/s13643-017-0473-z
pubmed: 28403893
pmcid: 5389085
Cantiello F, Crocerossa F, Russo GI, Gangemi V, Ferro M, Vartolomei MD, et al. Comparison between 64Cu-PSMA-617 PET/CT and 18F-choline PET/CT imaging in early diagnosis of prostate cancer biochemical recurrence. Clinical Genitourinary Cancer. 2018;16:385–91. https://doi.org/10.1016/j.clgc.2018.05.014 .
doi: 10.1016/j.clgc.2018.05.014
pubmed: 29937067
Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomacker K, et al. Comparison of [(18)F]DCFPyL and [ (68)Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17:575–84. https://doi.org/10.1007/s11307-015-0866-0 .
doi: 10.1007/s11307-015-0866-0
pubmed: 26013479
pmcid: 4493776
Pernthaler B, Kulnik R, Gstettner C, Salamon S, Aigner RM, Kvaternik H. A prospective head-to-head comparison of 18F-fluciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate Cancer in PET/CT. Clin Nucl Med. 2019;44.
Witkowska-Patena E, Gizewska A, Dziuk M, Misko J, Budzynska A, Walecka-Mazur A. Head-to-head comparison of 18F-prostate-specific membrane Antigen-1007 and 18F-Fluorocholine PET/CT in biochemically relapsed prostate cancer. Clin Nucl Med. 2019;44:e629–e33. https://doi.org/10.1097/RLU.0000000000002794 .
doi: 10.1097/RLU.0000000000002794
pubmed: 31689286
Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-Fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. Journal of Nuclear Medicine. 2015;56:1185–90. https://doi.org/10.2967/jnumed.115.160382 .
doi: 10.2967/jnumed.115.160382
pubmed: 26112024
Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20. https://doi.org/10.1007/s00259-013-2525-5 .
doi: 10.1007/s00259-013-2525-5
pubmed: 24072344
Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, et al. Comparison of (68)Ga-labelled PSMA-11 and (11)C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:92–101. https://doi.org/10.1007/s00259-016-3490-6 .
doi: 10.1007/s00259-016-3490-6
pubmed: 27557844
Emmett L, Metser U, Bauman G, Hicks RJ, Weickhardt A, Davis ID, et al. Prospective, multisite, international comparison of 18F-fluoromethylcholine PET/CT, multiparametric MRI, and 68Ga-HBED-CC PSMA-11 PET/CT in men with high-risk features and biochemical failure after radical prostatectomy: clinical performance and patient outcomes. J Nucl Med. 2019;60:794–800.
doi: 10.2967/jnumed.118.220103
Nanni C, Schiavina R, Brunocilla E, Boschi S, Borghesi M, Zanoni L, et al. 18F-Fluciclovine PET/CT for the detection of prostate cancer relapse: a comparison to 11C-choline PET/CT. Clin Nucl Med. 2015;40.
Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43:1601–10. https://doi.org/10.1007/s00259-016-3329-1 .
doi: 10.1007/s00259-016-3329-1
pubmed: 26960562
Bluemel C, Krebs M, Polat B, Linke F, Eiber M, Samnick S, et al. 68Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-choline-PET/CT. Clin Nucl Med. 2016;41:515–21. https://doi.org/10.1097/RLU.0000000000001197 .
doi: 10.1097/RLU.0000000000001197
pubmed: 26975008
pmcid: 5006491
Calais J, Czernin J, Cao M, Kishan AU, Hegde JV, Shaverdian N, et al. (68)Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. Journal of nuclear medicine : official publication. Society of Nuclear Medicine. 2018;59:230–7. https://doi.org/10.2967/jnumed.117.201749 .
doi: 10.2967/jnumed.117.201749
Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44:1258–68. https://doi.org/10.1007/s00259-017-3711-7 .
doi: 10.1007/s00259-017-3711-7
pubmed: 28497198
pmcid: 5486817
Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schafers M, Bogemann M, et al. Diagnostic performance of (18)F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:2055–61. https://doi.org/10.1007/s00259-018-4089-x .
doi: 10.1007/s00259-018-4089-x
pubmed: 30027419
pmcid: 6182394
Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection efficacy of (18)F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2019;60:362–8. https://doi.org/10.2967/jnumed.118.212233 .
doi: 10.2967/jnumed.118.212233
Papakonstantinou T, Nikolakopoulou A, Egger M, Salanti G. In network meta-analysis, most of the information comes from indirect evidence: empirical study. J Clin Epidemiol. 2020;124:42–9. https://doi.org/10.1016/j.jclinepi.2020.04.009 .
doi: 10.1016/j.jclinepi.2020.04.009
pubmed: 32302680
Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI physics. 2016;3:8. https://doi.org/10.1186/s40658-016-0144-5 .
doi: 10.1186/s40658-016-0144-5
pubmed: 27271304
pmcid: 4894854
Witkowska-Patena E, Giżewska A, Dziuk M, Miśko J, Budzyńska A, Walęcka-Mazur A. Diagnostic performance of 18F-PSMA-1007 PET/CT in biochemically relapsed patients with prostate cancer with PSA levels ≤ 2.0 ng/ml. Prostate Cancer and Prostatic Diseases. 2020;23:343–8. https://doi.org/10.1038/s41391-019-0194-6 .
doi: 10.1038/s41391-019-0194-6
pubmed: 31780781
Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncology. 2019;5:856–63. https://doi.org/10.1001/jamaoncol.2019.0096 .
doi: 10.1001/jamaoncol.2019.0096
pubmed: 30920593
pmcid: 6567829
Rauscher I, Kronke M, Konig M, Gafita A, Maurer T, Horn T, et al. Matched-pair comparison of (68)Ga-PSMA-11 PET/CT and (18)F-PSMA-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. Journal of nuclear medicine. 2020;61:51–7. https://doi.org/10.2967/jnumed.119.229187 .
doi: 10.2967/jnumed.119.229187
pubmed: 31253741
pmcid: 6954457
Rousseau E, Wilson D, Lacroix-Poisson F, Krauze A, Chi K, Gleave M, et al. A prospective study on (18)F-DCFPyL PSMA PET/CT imaging in biochemical recurrence of prostate cancer. Journal of Nuclear Medicine. 2019;60:1587–93. https://doi.org/10.2967/jnumed.119.226381 .
doi: 10.2967/jnumed.119.226381
pubmed: 30979820
pmcid: 6836862
Nikolakopoulou A, Mavridis D, Salanti G. Using conditional power of network meta-analysis (NMA) to inform the design of future clinical trials. Biom J. 2014;56:973–90. https://doi.org/10.1002/bimj.201300216 .
doi: 10.1002/bimj.201300216
pubmed: 25225031
Ceci F, Bianchi L, Borghesi M, Polverari G, Farolfi A, Briganti A, et al. Prediction nomogram for 68Ga-PSMA-11 PET/CT in different clinical settings of PSA failure after radical treatment for prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:136–46. https://doi.org/10.1007/s00259-019-04505-2 .
doi: 10.1007/s00259-019-04505-2
pubmed: 31492993
Schmuck S, Mamach M, Wilke F, von Klot CA, Henkenberens C, Thackeray JT, et al. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer: value of early dynamic and delayed imaging. Clin Nucl Med. 2017;42.
Alberts I, Sachpekidis C, Gourni E, Boxler S, Gross T, Thalmann G, et al. Dynamic patterns of [68Ga]Ga-PSMA-11 uptake in recurrent prostate cancer lesions. Eur J Nucl Med Mol Imaging. 2020;47:160–7. https://doi.org/10.1007/s00259-019-04545-8 .
doi: 10.1007/s00259-019-04545-8
pubmed: 31628514
Haupt F, Dijkstra L, Alberts I, Sachpekidis C, Fech V, Boxler S, et al. 68Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer—a modified protocol compared with the common protocol. Eur J Nucl Med Mol Imaging. 2020;47:624–31. https://doi.org/10.1007/s00259-019-04548-5 .
doi: 10.1007/s00259-019-04548-5
pubmed: 31673789
Uprimny C, Bayerschmidt S, Kroiss AS, Fritz J, Nilica B, Svirydenka A, et al. Impact of forced diuresis with furosemide and hydration on the halo artefact and intensity of tracer accumulation in the urinary bladder and kidneys on [68Ga]Ga-PSMA-11-PET/CT in the evaluation of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04846-3 .
Alberts I, Sachpekidis C, Fech V, Rominger A, Afshar-Oromieh A. PSMA-negative prostate cancer and the continued value of choline-PET/CT. Nuklearmedizin Nuclear Medicine. 2020;59:1. https://doi.org/10.1055/a-1044-1855 .
doi: 10.1055/a-1044-1855