SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
03 2021
Historique:
received: 18 09 2020
accepted: 29 01 2021
pubmed: 10 2 2021
medline: 24 3 2021
entrez: 9 2 2021
Statut: ppublish

Résumé

All coronaviruses known to have recently emerged as human pathogens probably originated in bats

Identifiants

pubmed: 33561864
doi: 10.1038/s41586-021-03312-w
pii: 10.1038/s41586-021-03312-w
pmc: PMC7979515
mid: NIHMS1668459
doi:

Substances chimiques

Cytokines 0
Hydroxylamines 0
Interferon Type I 0
Cytidine 5CSZ8459RP
molnupiravir YA84KI1VEW

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

451-457

Subventions

Organisme : NIAID NIH HHS
ID : R21 AI113736
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH108179
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123010
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI108197
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016086
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI140799
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI138247
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI111899
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI100625
Pays : United States

Commentaires et corrections

Type : UpdateOf

Références

Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947 doi: 10.1038/s41579-018-0118-9
Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).
pubmed: 32087114 pmcid: 7159018 doi: 10.1016/S1473-3099(20)30120-1
Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020).
pubmed: 32724171 doi: 10.1038/s41564-020-0771-4
Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833 (2020).
pubmed: 32380511 doi: 10.1038/s41586-020-2312-y
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 (2020).
pubmed: 32416070 pmcid: 7227586 doi: 10.1016/j.cell.2020.04.026
Cockrell, A. S. et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2, 16226 (2017).
doi: 10.1038/nmicrobiol.2016.226
Dinnon, K. H. III et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108 doi: 10.1038/s41586-020-2708-8 pmcid: 8034761
Gralinski, L. E. et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio 9, e01753-18 (2018).
pubmed: 30301856 pmcid: 6178621 doi: 10.1128/mBio.01753-18
Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58.e8 (2020).
pubmed: 32516571 pmcid: 7241398
McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
pubmed: 17079315
Menachery, V. D. et al. Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. MSphere 2, e00346-17 (2017).
pubmed: 29152578 pmcid: 5687918 doi: 10.1128/mSphere.00346-17
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
pubmed: 26552008 pmcid: 4797993 doi: 10.1038/nm.3985
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
pubmed: 26976607 doi: 10.1073/pnas.1517719113 pmcid: 4801244
Rockx, B. et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015 (2020).
pubmed: 32303590 pmcid: 7164679 doi: 10.1126/science.abb7314
Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020).
pubmed: 32253226 doi: 10.1126/scitranslmed.abb5883
Franks, T. J. et al. Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc. Am. Thorac. Soc. 5, 763–766 (2008).
pubmed: 18757314 doi: 10.1513/pats.200803-025HR
Wahl, A. et al. Precision mouse models with expanded tropism for human pathogens. Nat. Biotechnol. 37, 1163–1173 (2019).
pubmed: 31451733 pmcid: 6776695 doi: 10.1038/s41587-019-0225-9
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
pubmed: 32142651 pmcid: 7102627 doi: 10.1016/j.cell.2020.02.052
Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
pubmed: 14647384 pmcid: 7095016 doi: 10.1038/nature02145
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).
pubmed: 32155444 pmcid: 7102599 doi: 10.1016/j.cell.2020.02.058
Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
pubmed: 32132184 pmcid: 7164635 doi: 10.1126/science.abb2762
Carsana, L. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. 20, 1135–1140 (2020).
pubmed: 32526193 pmcid: 7279758 doi: 10.1016/S1473-3099(20)30434-5
Menter, T. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 77, 198–209 (2020).
pubmed: 32364264 pmcid: 7496150 doi: 10.1111/his.14134
Tian, S. et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 15, 700–704 (2020).
pubmed: 32114094 pmcid: 7128866 doi: 10.1016/j.jtho.2020.02.010
Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).
pubmed: 31978945 pmcid: 7092803 doi: 10.1056/NEJMoa2001017
Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).
pubmed: 32330414 pmcid: 7179501 doi: 10.1016/j.cell.2020.04.011
Merck Sharp & Dohme Corp. Efficacy and Safety of Molnupiravir (MK-4482) in Hospitalized Adult Participants With COVID-19 (MK-4482–001), https://ClinicalTrials.gov/show/NCT04575584 (2020).
Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).
pubmed: 32085846 pmcid: 7164771 doi: 10.1016/S2213-2600(20)30076-X
Zhang, H. et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 172, 629–632 (2020).
pubmed: 32163542 doi: 10.7326/M20-0533
Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883–890 (2020).
pubmed: 32407669 pmcid: 7196896 doi: 10.1016/j.chom.2020.04.017
Siu, K. L. et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKε complex. J. Biol. Chem. 284, 16202–16209 (2009).
pubmed: 19380580 pmcid: 2713514 doi: 10.1074/jbc.M109.008227
Spiegel, M. et al. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 79, 2079–2086 (2005).
pubmed: 15681410 pmcid: 546554 doi: 10.1128/JVI.79.4.2079-2086.2005
Vanderheiden, A. et al. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. J. Virol. 94, e00985-20 (2020).
pubmed: 32699094 pmcid: 7495371 doi: 10.1128/JVI.00985-20
Qin, C. et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 71, 762–768 (2020).
pubmed: 32161940 doi: 10.1093/cid/ciaa248
Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 – final report. N. Engl. J. Med. 383, 1813–1826 (2020).
pubmed: 32445440 doi: 10.1056/NEJMoa2007764
WHO Solidarity Trial Consortium. Repurposed antiviral drugs for COVID-19 –interim WHO Solidarity trial results. N. Engl. J. Med. 384, 497–511 (2021).
doi: 10.1056/NEJMoa2023184
Chen, P. et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med. 384, 229–237 (2021).
pubmed: 33113295 doi: 10.1056/NEJMoa2029849
Regeneron Pharmaceuticals Inc. Regeneron’s COVID-19 outpatient trial prospectively demonstrates that REGN-COV2 antibody cocktail significantly reduced virus levels and need for further medical attention. https://newsroom.regeneron.com/news-releases/news-release-details/regenerons-covid-19-outpatient-trial-prospectively-demonstrates (2020).
Kim, P. S., Read, S. W. & Fauci, A. S. Therapy for early COVID-19: a critical need. J. Am. Med. Assoc. 324, 2149–2150 (2020).
doi: 10.1001/jama.2020.22813
Sticher, Z. M. et al. Analysis of the potential for N
pubmed: 31767721 pmcid: 6985706 doi: 10.1128/AAC.01719-19
Toots, M. et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 11, eaax5866 (2019).
pubmed: 31645453 pmcid: 6848974 doi: 10.1126/scitranslmed.aax5866
Cox, R. M., Wolf, J. D. & Plemper, R. K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-Cov-2 transmission in ferrets. Nat. Microbiol. 6, 11–18 (2021).
pubmed: 33273742 doi: 10.1038/s41564-020-00835-2
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).
pubmed: 32526206 pmcid: 7250779 doi: 10.1016/j.cell.2020.05.042
Scobey, T. et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 110, 16157–16162 (2013).
pubmed: 24043791 pmcid: 3791741 doi: 10.1073/pnas.1311542110
Yount, B. et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 100, 12995–13000 (2003).
pubmed: 14569023 doi: 10.1073/pnas.1735582100 pmcid: 240733
Simionescu, N. & Simionescu, M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J. Cell Biol. 70, 608–621 (1976).
pubmed: 783172 doi: 10.1083/jcb.70.3.608
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300, (1995).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
pubmed: 19192299 pmcid: 2644678 doi: 10.1186/1471-2105-10-48

Auteurs

Angela Wahl (A)

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Lisa E Gralinski (LE)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Claire E Johnson (CE)

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Wenbo Yao (W)

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Martina Kovarova (M)

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kenneth H Dinnon (KH)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Hongwei Liu (H)

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Victoria J Madden (VJ)

Microscopy Services Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Halina M Krzystek (HM)

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Chandrav De (C)

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kristen K White (KK)

Microscopy Services Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kendra Gully (K)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Alexandra Schäfer (A)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Tanzila Zaman (T)

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sarah R Leist (SR)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Paul O Grant (PO)

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Gregory R Bluemling (GR)

Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA, USA.
Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA, USA.

Alexander A Kolykhalov (AA)

Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA, USA.
Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA, USA.

Michael G Natchus (MG)

Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA, USA.

Frederic B Askin (FB)

Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

George Painter (G)

Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA, USA.
Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA, USA.
Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA.

Edward P Browne (EP)

Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Corbin D Jones (CD)

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Raymond J Pickles (RJ)

Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Marsico Lung Institute, University of North Carolina at Chapel, Chapel Hill, NC, USA.

Ralph S Baric (RS)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

J Victor Garcia (JV)

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. victor_garcia@med.unc.edu.
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. victor_garcia@med.unc.edu.
Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. victor_garcia@med.unc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH