SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801.
Administration, Oral
Alveolar Epithelial Cells
/ immunology
Animals
COVID-19
/ immunology
Chemoprevention
Chiroptera
/ virology
Clinical Trials, Phase II as Topic
Clinical Trials, Phase III as Topic
Cytidine
/ administration & dosage
Cytokines
/ immunology
Epithelial Cells
/ virology
Female
Heterografts
Humans
Hydroxylamines
/ administration & dosage
Immunity, Innate
Interferon Type I
/ immunology
Lung
/ immunology
Lung Transplantation
Male
Mice
Post-Exposure Prophylaxis
Pre-Exposure Prophylaxis
SARS-CoV-2
/ immunology
Virus Replication
COVID-19 Drug Treatment
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
18
09
2020
accepted:
29
01
2021
pubmed:
10
2
2021
medline:
24
3
2021
entrez:
9
2
2021
Statut:
ppublish
Résumé
All coronaviruses known to have recently emerged as human pathogens probably originated in bats
Identifiants
pubmed: 33561864
doi: 10.1038/s41586-021-03312-w
pii: 10.1038/s41586-021-03312-w
pmc: PMC7979515
mid: NIHMS1668459
doi:
Substances chimiques
Cytokines
0
Hydroxylamines
0
Interferon Type I
0
Cytidine
5CSZ8459RP
molnupiravir
YA84KI1VEW
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
451-457Subventions
Organisme : NIAID NIH HHS
ID : R21 AI113736
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH108179
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123010
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI108197
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016086
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI140799
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI138247
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI111899
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI100625
Pays : United States
Commentaires et corrections
Type : UpdateOf
Références
Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947
doi: 10.1038/s41579-018-0118-9
Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).
pubmed: 32087114
pmcid: 7159018
doi: 10.1016/S1473-3099(20)30120-1
Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020).
pubmed: 32724171
doi: 10.1038/s41564-020-0771-4
Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833 (2020).
pubmed: 32380511
doi: 10.1038/s41586-020-2312-y
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 (2020).
pubmed: 32416070
pmcid: 7227586
doi: 10.1016/j.cell.2020.04.026
Cockrell, A. S. et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2, 16226 (2017).
doi: 10.1038/nmicrobiol.2016.226
Dinnon, K. H. III et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108
doi: 10.1038/s41586-020-2708-8
pmcid: 8034761
Gralinski, L. E. et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio 9, e01753-18 (2018).
pubmed: 30301856
pmcid: 6178621
doi: 10.1128/mBio.01753-18
Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58.e8 (2020).
pubmed: 32516571
pmcid: 7241398
McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
pubmed: 17079315
Menachery, V. D. et al. Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. MSphere 2, e00346-17 (2017).
pubmed: 29152578
pmcid: 5687918
doi: 10.1128/mSphere.00346-17
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
pubmed: 26552008
pmcid: 4797993
doi: 10.1038/nm.3985
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
pubmed: 26976607
doi: 10.1073/pnas.1517719113
pmcid: 4801244
Rockx, B. et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015 (2020).
pubmed: 32303590
pmcid: 7164679
doi: 10.1126/science.abb7314
Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020).
pubmed: 32253226
doi: 10.1126/scitranslmed.abb5883
Franks, T. J. et al. Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc. Am. Thorac. Soc. 5, 763–766 (2008).
pubmed: 18757314
doi: 10.1513/pats.200803-025HR
Wahl, A. et al. Precision mouse models with expanded tropism for human pathogens. Nat. Biotechnol. 37, 1163–1173 (2019).
pubmed: 31451733
pmcid: 6776695
doi: 10.1038/s41587-019-0225-9
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
pubmed: 32142651
pmcid: 7102627
doi: 10.1016/j.cell.2020.02.052
Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
pubmed: 14647384
pmcid: 7095016
doi: 10.1038/nature02145
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).
pubmed: 32155444
pmcid: 7102599
doi: 10.1016/j.cell.2020.02.058
Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
pubmed: 32132184
pmcid: 7164635
doi: 10.1126/science.abb2762
Carsana, L. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. 20, 1135–1140 (2020).
pubmed: 32526193
pmcid: 7279758
doi: 10.1016/S1473-3099(20)30434-5
Menter, T. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 77, 198–209 (2020).
pubmed: 32364264
pmcid: 7496150
doi: 10.1111/his.14134
Tian, S. et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 15, 700–704 (2020).
pubmed: 32114094
pmcid: 7128866
doi: 10.1016/j.jtho.2020.02.010
Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).
pubmed: 31978945
pmcid: 7092803
doi: 10.1056/NEJMoa2001017
Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).
pubmed: 32330414
pmcid: 7179501
doi: 10.1016/j.cell.2020.04.011
Merck Sharp & Dohme Corp. Efficacy and Safety of Molnupiravir (MK-4482) in Hospitalized Adult Participants With COVID-19 (MK-4482–001), https://ClinicalTrials.gov/show/NCT04575584 (2020).
Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).
pubmed: 32085846
pmcid: 7164771
doi: 10.1016/S2213-2600(20)30076-X
Zhang, H. et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 172, 629–632 (2020).
pubmed: 32163542
doi: 10.7326/M20-0533
Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883–890 (2020).
pubmed: 32407669
pmcid: 7196896
doi: 10.1016/j.chom.2020.04.017
Siu, K. L. et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKε complex. J. Biol. Chem. 284, 16202–16209 (2009).
pubmed: 19380580
pmcid: 2713514
doi: 10.1074/jbc.M109.008227
Spiegel, M. et al. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 79, 2079–2086 (2005).
pubmed: 15681410
pmcid: 546554
doi: 10.1128/JVI.79.4.2079-2086.2005
Vanderheiden, A. et al. Type I and type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. J. Virol. 94, e00985-20 (2020).
pubmed: 32699094
pmcid: 7495371
doi: 10.1128/JVI.00985-20
Qin, C. et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 71, 762–768 (2020).
pubmed: 32161940
doi: 10.1093/cid/ciaa248
Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 – final report. N. Engl. J. Med. 383, 1813–1826 (2020).
pubmed: 32445440
doi: 10.1056/NEJMoa2007764
WHO Solidarity Trial Consortium. Repurposed antiviral drugs for COVID-19 –interim WHO Solidarity trial results. N. Engl. J. Med. 384, 497–511 (2021).
doi: 10.1056/NEJMoa2023184
Chen, P. et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med. 384, 229–237 (2021).
pubmed: 33113295
doi: 10.1056/NEJMoa2029849
Regeneron Pharmaceuticals Inc. Regeneron’s COVID-19 outpatient trial prospectively demonstrates that REGN-COV2 antibody cocktail significantly reduced virus levels and need for further medical attention. https://newsroom.regeneron.com/news-releases/news-release-details/regenerons-covid-19-outpatient-trial-prospectively-demonstrates (2020).
Kim, P. S., Read, S. W. & Fauci, A. S. Therapy for early COVID-19: a critical need. J. Am. Med. Assoc. 324, 2149–2150 (2020).
doi: 10.1001/jama.2020.22813
Sticher, Z. M. et al. Analysis of the potential for N
pubmed: 31767721
pmcid: 6985706
doi: 10.1128/AAC.01719-19
Toots, M. et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 11, eaax5866 (2019).
pubmed: 31645453
pmcid: 6848974
doi: 10.1126/scitranslmed.aax5866
Cox, R. M., Wolf, J. D. & Plemper, R. K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-Cov-2 transmission in ferrets. Nat. Microbiol. 6, 11–18 (2021).
pubmed: 33273742
doi: 10.1038/s41564-020-00835-2
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).
pubmed: 32526206
pmcid: 7250779
doi: 10.1016/j.cell.2020.05.042
Scobey, T. et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 110, 16157–16162 (2013).
pubmed: 24043791
pmcid: 3791741
doi: 10.1073/pnas.1311542110
Yount, B. et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 100, 12995–13000 (2003).
pubmed: 14569023
doi: 10.1073/pnas.1735582100
pmcid: 240733
Simionescu, N. & Simionescu, M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J. Cell Biol. 70, 608–621 (1976).
pubmed: 783172
doi: 10.1083/jcb.70.3.608
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300, (1995).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
pubmed: 19192299
pmcid: 2644678
doi: 10.1186/1471-2105-10-48