The methyltransferase METTL9 mediates pervasive 1-methylhistidine modification in mammalian proteomes.
Amino Acid Motifs
Animals
Cells, Cultured
Histidine
/ metabolism
Humans
Mammals
/ classification
Methylation
Methylhistidines
/ metabolism
Methyltransferases
/ genetics
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria
/ metabolism
Mutation
Protein Processing, Post-Translational
Proteome
/ chemistry
Substrate Specificity
Zinc
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
09 02 2021
09 02 2021
Historique:
received:
24
02
2020
accepted:
10
12
2020
entrez:
10
2
2021
pubmed:
11
2
2021
medline:
24
2
2021
Statut:
epublish
Résumé
Post-translational methylation plays a crucial role in regulating and optimizing protein function. Protein histidine methylation, occurring as the two isomers 1- and 3-methylhistidine (1MH and 3MH), was first reported five decades ago, but remains largely unexplored. Here we report that METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mouse and human proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is preferably a small amino acid, allowing METTL9 to methylate a number of HxH-containing proteins, including the immunomodulatory protein S100A9 and the NDUFB3 subunit of mitochondrial respiratory Complex I. Notably, METTL9-mediated methylation enhances respiration via Complex I, and the presence of 1MH in an HxH-containing peptide reduced its zinc binding affinity. Our results establish METTL9-mediated 1MH as a pervasive protein modification, thus setting the stage for further functional studies on protein histidine methylation.
Identifiants
pubmed: 33563959
doi: 10.1038/s41467-020-20670-7
pii: 10.1038/s41467-020-20670-7
pmc: PMC7873184
doi:
Substances chimiques
Methylhistidines
0
Proteome
0
1-methylhistidine
332-80-9
Histidine
4QD397987E
Methyltransferases
EC 2.1.1.-
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
891Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Cancer Research UK
Pays : United Kingdom
Références
Biochem J. 1996 May 15;316 ( Pt 1):285-93
pubmed: 8645219
Nat Rev Genet. 2012 Apr 03;13(5):343-57
pubmed: 22473383
Cell Syst. 2017 Jun 28;4(6):587-599.e4
pubmed: 28601559
Trends Biochem Sci. 2003 Jun;28(6):329-35
pubmed: 12826405
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
J Exp Med. 1998 Dec 7;188(11):1985-92
pubmed: 9841913
Bioinformatics. 2009 May 1;25(9):1189-91
pubmed: 19151095
Nat Protoc. 2006;1(6):2856-60
pubmed: 17406544
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5
pubmed: 16845026
Nat Protoc. 2012 Jul 19;7(8):1511-22
pubmed: 22814390
ACS Chem Biol. 2017 Apr 21;12(4):958-968
pubmed: 28169523
Biol Chem Hoppe Seyler. 1987 Dec;368(12):1607-11
pubmed: 3442604
Mol Cell Proteomics. 2015 Jan;14(1):120-35
pubmed: 25363814
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13661-13666
pubmed: 29229866
Biochem J. 2016 Jul 15;473(14):1995-2009
pubmed: 27407169
Proteome Sci. 2003 Aug 13;1(1):5
pubmed: 12946274
J Proteome Res. 2018 Jan 5;17(1):727-738
pubmed: 29183128
Methods Mol Biol. 2017;1567:217-230
pubmed: 28276021
Cell Host Microbe. 2011 Aug 18;10(2):158-64
pubmed: 21843872
Cell. 2015 Jul 16;162(2):425-440
pubmed: 26186194
Curr Protein Pept Sci. 2020;21(7):675-689
pubmed: 32188384
Epigenetics. 2020 Oct;15(10):1121-1138
pubmed: 32303148
Nucleic Acids Res. 2000 Jan 1;28(1):304-5
pubmed: 10592255
Trends Biochem Sci. 2013 Dec;38(12):621-39
pubmed: 24148750
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
PLoS One. 2014 Aug 21;9(8):e105394
pubmed: 25144183
Mol Cell Proteomics. 2005 May;4(5):693-9
pubmed: 15728260
FEBS Lett. 2008 Jul 9;582(16):2352-6
pubmed: 18539146
Mol Cell Biol. 2010 Apr;30(7):1814-27
pubmed: 20123966
Biochim Biophys Acta. 2014 Dec;1839(12):1395-403
pubmed: 24561874
Chem Cent J. 2013 Mar 01;7(1):44
pubmed: 23452343
Am J Hum Genet. 2019 Jun 6;104(6):1202-1209
pubmed: 31079898
J Biol Chem. 1972 Feb 10;247(3):745-53
pubmed: 5058224
J Vis Exp. 2014 Nov 29;(93):e52203
pubmed: 25489813
Nat Protoc. 2007;2(8):1896-906
pubmed: 17703201
J Cell Sci. 2007 Dec 15;120(Pt 24):4243-6
pubmed: 18057026
Free Radic Biol Med. 2019 Nov 1;143:573-593
pubmed: 31476365
Chem Commun (Camb). 2018 Aug 14;54(66):9202-9205
pubmed: 30063235
EMBO Rep. 2015 Dec;16(12):1620-39
pubmed: 26564907
Biochim Biophys Acta Proteins Proteom. 2019 Jan;1867(1):28-37
pubmed: 29883687
Sci Rep. 2019 Apr 29;9(1):6584
pubmed: 31036863
Chem Commun (Camb). 2016 Apr 7;52(31):5474-7
pubmed: 27021271
Mol Cell Proteomics. 2011 Jan;10(1):M110.000976
pubmed: 20930037
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
Elife. 2018 Dec 11;7:
pubmed: 30526847
Biochem J. 1967 Oct;105(1):361-70
pubmed: 6056634
Physiol Rev. 2015 Jul;95(3):749-84
pubmed: 26084690
Nat Commun. 2011 Feb 01;2:172
pubmed: 21285950
Nat Struct Mol Biol. 2007 Nov;14(11):1025-1040
pubmed: 17984965
Mol Cell. 2018 Jun 21;70(6):1038-1053.e7
pubmed: 29932899
Sci Rep. 2018 Jan 19;8(1):1179
pubmed: 29352221
Nature. 2019 Jan;565(7739):372-376
pubmed: 30626964
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Nature. 2017 May 25;545(7655):505-509
pubmed: 28514442