The neurochemistry of social reward during development: What have we learned from rodent models?
maternal behavior
operant behavior
place conditioning
social play
social reward
Journal
Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
02
02
2021
received:
23
11
2020
accepted:
07
02
2021
pubmed:
12
2
2021
medline:
25
8
2021
entrez:
11
2
2021
Statut:
ppublish
Résumé
Social rewards are fundamental to survival and overall health. Several studies suggest that adequate social stimuli during early life are critical for developing appropriate socioemotional and cognitive skills, whereas adverse social experiences negatively affect the proper development of brain and behavior, by increasing the susceptibility to develop neuropsychiatric conditions. Therefore, a better understanding of the neural mechanisms underlying social interactions, and their rewarding components in particular, is an important challenge of current neuroscience research. In this context, preclinical research has a crucial role: Animal models allow to investigate the neurobiological aspects of social reward in order to shed light on possible neurochemical alterations causing aberrant social reward processing in neuropsychiatric diseases, and they allow to test the validity and safety of innovative therapeutic strategies. Here, we discuss preclinical research that has investigated the rewarding properties of two forms of social interaction that occur in different phases of the lifespan of mammals, that is, mother-infant interaction and social interactions with peers, by focusing on the main neurotransmitter systems mediating their rewarding components. Together, the research performed so far helped to elucidate the mechanisms of social reward and its psychobiological components throughout development, thus increasing our understanding of the neurobiological substrates sustaining social functioning in health conditions and social dysfunction in major psychiatric disorders.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1408-1435Informations de copyright
© 2021 International Society for Neurochemistry.
Références
Abdul-Monim, Z., Neill, J. C., & Reynolds, G. P. (2007). Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. Journal of Psychopharmacology, 21, 198-205. https://doi.org/10.1177/0269881107067097.
Abdul-Monim, Z., Reynolds, G. P., & Neill, J. C. (2006). The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behavioural Brain Research, 169, 263-273. https://doi.org/10.1016/j.bbr.2006.01.019.
Abel, E. L. (1980). Prenatal exposure to cannabis: A critical review of effects on growth, development, and behavior. Behavioral and Neural Biology, 29, 137-156. https://doi.org/10.1016/S0163-1047(80)90469-0.
Achterberg, E. J. M., Damsteegt, R., & Vanderschuren, L. (2018). On the central noradrenergic mechanism underlying the social play-suppressant effect of methylphenidate in rats. Behavioural Brain Research, 347, 158-166. https://doi.org/10.1016/j.bbr.2018.03.004.
Achterberg, E. J., van Kerkhof, L. W., Servadio, M., van Swieten, M. M., Houwing, D. J., Aalderink, M., Driel, N. V., Trezza, V., & Vanderschuren, L. J. (2016). Contrasting roles of dopamine and noradrenaline in the motivational properties of social play behavior in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41, 858-868. https://doi.org/10.1038/npp.2015.212.
Achterberg, E. J. M., van Swieten, M. M. H., Driel, N. V., Trezza, V., & Vanderschuren, L. (2016). Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharmacological Research, 110, 151-158. https://doi.org/10.1016/j.phrs.2016.04.031.
Achterberg, E. J. M., van Swieten, M. M. H., Houwing, D. J., Trezza, V., & Vanderschuren, L. (2019). Opioid modulation of social play reward in juvenile rats. Neuropharmacology, 159, 107332.-https://doi.org/10.1016/j.neuropharm.2018.09.007.
(2013). Diagnostic and Statistical Manual of Mental Disorders. American (Psychiatric Association.
Antonelli, T., Tomasini, M. C., Tattoli, M., Cassano, T., Tanganelli, S., Finetti, S., Mazzoni, E., Trabace, L., Steardo, L., Cuomo, V., & Ferraro, L. (2005). Prenatal exposure to the CB1 receptor agonist WIN 55,212-2 causes learning disruption associated with impaired cortical NMDA receptor function and emotional reactivity changes in rat offspring. Cerebral Cortex, 15, 2013-2020. https://doi.org/10.1093/cercor/bhi076.
Baharnoori, M., Bhardwaj, S. K., & Srivastava, L. K. (2012). Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: A prenatal infection model for developmental neuropsychiatric disorders. Schizophrenia Bulletin, 38, 444-456. https://doi.org/10.1093/schbul/sbq098.
Ballageer, T., Malla, A., Manchanda, R., Takhar, J., & Haricharan, R. (2005). Is adolescent-onset first-episode psychosis different from adult onset? Journal of the American Academy of Child and Adolescent Psychiatry, 44, 782-789. https://doi.org/10.1097/01.chi.0000164591.55942.ea.
Bara, A., Manduca, A., Bernabeu, A., Borsoi, M., Serviado, M., Lassalle, O., Murphy, M., Wager-Miller, J., Mackie, K., Pelissier-Alicot, A-L., Trezza, V., & Manzoni, J. (2018). Sex-dependent effects of in utero cannabinoid exposure on cortical function. eLife, 7, e36234.
Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl), 153, 31-43. https://doi.org/10.1007/s002130000569.
Bariselli, S., Contestabile, A., Tzanoulinou, S., Musardo, S., & Bellone, C. (2018). SHANK3 downregulation in the ventral tegmental area accelerates the extinction of contextual associations induced by juvenile non-familiar conspecific interaction. Frontiers in Molecular Neuroscience, 11, 360. https://doi.org/10.3389/fnmol.2018.00360.
Bariselli, S., Hornberg, H., Prevost-Solie, C., Musardo, S., Hatstatt-Burkle, L., Scheiffele, P., & Bellone, C. (2018). Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nature Communications, 9, 3173. https://doi.org/10.1038/s41467-018-05382-3.
Bariselli, S., Tzanoulinou, S., Glangetas, C., Prévost-Solié, C., Pucci, L., Viguié, J., Bezzi, P., O'Connor, E. C., Georges, F., Lüscher, C., & Bellone, C. (2016). SHANK3 controls maturation of social reward circuits in the VTA. Nature Neuroscience, 19, 926-934. https://doi.org/10.1038/nn.4319.
Baskerville, T. A., & Douglas, A. J. (2010). Dopamine and oxytocin interactions underlying behaviors: Potential contributions to behavioral disorders. CNS Neuroscience & Therapeutics, 16, e92-123. https://doi.org/10.1111/j.1755-5949.2010.00154.x.
Bechtholt, A. J., Gremel, C. M., & Cunningham, C. L. (2004). Handling blocks expression of conditioned place aversion but not conditioned place preference produced by ethanol in mice. Pharmacology, Biochemistry, and Behavior, 79, 739-744. https://doi.org/10.1016/j.pbb.2004.10.003.
Becker, J. A., Clesse, D., Spiegelhalter, C., Schwab, Y., Le Merrer, J., & Kieffer, B. L. (2014). Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39, 2049-2060. https://doi.org/10.1038/npp.2014.59.
Beloate, L. N., & Coolen, L. M. (2017). Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neuroscience and Biobehavioral Reviews, 83, 356-372. https://doi.org/10.1016/j.neubiorev.2017.10.024.
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology (Berl), 199, 457-480. https://doi.org/10.1007/s00213-008-1099-6.
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646-664. https://doi.org/10.1016/j.neuron.2015.02.018.
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: 'liking', 'wanting', and learning. Current Opinion in Pharmacology, 9, 65-73. https://doi.org/10.1016/j.coph.2008.12.014.
Bonanno, G. A. (2004). Loss, trauma, and human resilience: Have we underestimated the human capacity to thrive after extremely aversive events? The American Psychologist, 59, 20-28. https://doi.org/10.1037/0003-066X.59.1.20.
Borland, J. M., Frantz, K. J., Aiani, L. M., Grantham, K. N., Song, Z., & Albers, H. E. (2017). A novel operant task to assess social reward and motivation in rodents. Journal of Neuroscience Methods, 287, 80-88. https://doi.org/10.1016/j.jneumeth.2017.06.003.
Bortolato, M., Campolongo, P., Mangieri, R. A., Scattoni, M. L., Frau, R., Trezza, V., La Rana, G., Russo, R., Calignano, A., Gessa, G. L., Cuomo, V., & Piomelli, D. (2006). Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 31, 2652-2659. https://doi.org/10.1038/sj.npp.1301061.
Branchi, I., Santucci, D., & Alleva, E. (2001). Ultrasonic vocalisation emitted by infant rodents: A tool for assessment of neurobehavioural development. Behavioural Brain Research, 125, 49-56. https://doi.org/10.1016/S0166-4328(01)00277-7.
Bridges, R. S. (2015). Neuroendocrine regulation of maternal behavior. Frontiers in Neuroendocrinology, 36, 178-196. https://doi.org/10.1016/j.yfrne.2014.11.007.
Bridges, R. S., & Grimm, C. T. (1982). Reversal of morphine disruption of maternal behavior by concurrent treatment with the opiate antagonist naloxone. Science, 218, 166-168. https://doi.org/10.1126/science.7123227.
Brudzynski, S. M. (2005). Principles of rat communication: Quantitative parameters of ultrasonic calls in rats. Behavior Genetics, 35, 85-92. https://doi.org/10.1007/s10519-004-0858-3.
Burgdorf, J., & Panksepp, J. (2001). Tickling induces reward in adolescent rats. Physiology & Behavior, 72, 167-173. https://doi.org/10.1016/S0031-9384(00)00411-X.
Byrnes, E. M., & Bridges, R. S. (2000). Endogenous opioid facilitation of maternal memory in rats. Behavioral Neuroscience, 114, 797-804. https://doi.org/10.1037/0735-7044.114.4.797.
Cacioppo, J. T., & Hawkley, L. C. (2009). Perceived social isolation and cognition. Trends in Cognitive Sciences, 13, 447-454. https://doi.org/10.1016/j.tics.2009.06.005.
Calcagnetti, D. J., & Schechter, M. D. (1992). Place conditioning reveals the rewarding aspect of social interaction in juvenile rats. Physiology & Behavior, 51, 667-672. https://doi.org/10.1016/0031-9384(92)90101-7.
Cann, C., Venniro, M., Hope, B. T., & Ramsey, L. A. (2020). Parametric investigation of social place preference in adolescent mice. Behavioral Neuroscience, 134, 435-443. https://doi.org/10.1037/bne0000406.
Carden, S. E., Barr, G. A., & Hofer, M. A. (1991). Differential effects of specific opioid receptor agonists on rat pup isolation calls. Brain Research. Developmental Brain Research, 62, 17-22. https://doi.org/10.1016/0165-3806(91)90185-L.
Carden, S. E., Davachi, L., & Hofer, M. A. (1994). U50,488 increases ultrasonic vocalizations in 3-, 10-, and 18-day-old rat pups in isolation and the home cage. Developmental Psychobiology, 27, 65-83. https://doi.org/10.1002/dev.420270107.
Carden, S. E., & Hofer, M. A. (1990a). The effects of opioid and benzodiazepine antagonists on dam-induced reductions in rat pup isolation distress. Developmental Psychobiology, 23, 797-808. https://doi.org/10.1002/dev.420230804.
Carden, S. E., & Hofer, M. A. (1990b). Independence of benzodiazepine and opiate action in the suppression of isolation distress in rat pups. Behavioral Neuroscience, 104, 160-166. https://doi.org/10.1037/0735-7044.104.1.160.
Carden, S. E., & Hofer, M. A. (1991). Isolation-induced vocalization in Wistar rat pups is not increased by naltrexone. Physiology & Behavior, 49, 1279-1282. https://doi.org/10.1016/0031-9384(91)90363-S.
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26, 321-352. https://doi.org/10.1016/S0149-7634(02)00007-6.
Carter, C. S. (2003). Developmental consequences of oxytocin. Physiology & Behavior, 79, 383-397. https://doi.org/10.1016/S0031-9384(03)00151-3.
Carter, C. S., Williams, J. R., Witt, D. M., & Insel, T. R. (1992). Oxytocin and social bonding. Annals of the New York Academy of Sciences, 652, 204-211. https://doi.org/10.1111/j.1749-6632.1992.tb34356.x.
Castells, X., Blanco-Silvente, L., & Cunill, R. (2018). Amphetamines for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database of Systematic Reviews, 8, CD007813. https://doi.org/10.1002/14651858.CD007813.pub3.
Champagne, F. A., Chretien, P., Stevenson, C. W., Zhang, T. Y., Gratton, A., & Meaney, M. J. (2004). Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24, 4113-4123. https://doi.org/10.1523/JNEUROSCI.5322-03.2004.
Champagne, F. A., & Curley, J. P. (2005). How social experiences influence the brain. Current Opinion in Neurobiology, 15, 704-709. https://doi.org/10.1016/j.conb.2005.10.001.
Champagne, F., Diorio, J., Sharma, S., & Meaney, M. J. (2001). Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proceedings of the National Academy of Sciences of the United States of America, 98, 12736-12741. https://doi.org/10.1073/pnas.221224598.
Champagne, F., & Meaney, M. J. (2001). Like mother, like daughter: Evidence for non-genomic transmission of parental behavior and stress responsivity. Progress in Brain Research, 133, 287-302.
Charuvastra, A., & Cloitre, M. (2008). Social bonds and posttraumatic stress disorder. Annual Review of Psychology, 59, 301-328. https://doi.org/10.1146/annurev.psych.58.110405.085650.
Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16, 231-239. https://doi.org/10.1016/j.tics.2012.02.007.
Childs, E., & de Wit, H. (2009). Amphetamine-induced place preference in humans. Biological Psychiatry, 65, 900-904. https://doi.org/10.1016/j.biopsych.2008.11.016.
Childs, E., & de Wit, H. (2016). Alcohol-induced place conditioning in moderate social drinkers. Addiction, 111, 2157-2165. https://doi.org/10.1111/add.13540.
Cinque, C., Pondiki, S., Oddi, D., Di Certo, M. G., Marinelli, S., Troisi, A., Moles, A., & D'Amato, F. R. (2012). Modeling socially anhedonic syndromes: Genetic and pharmacological manipulation of opioid neurotransmission in mice. Translational Psychiatry, 2, e155. https://doi.org/10.1038/tp.2012.83.
Cohen-Salmon, C., Carlier, M., Roubertoux, P., Jouhaneau, J., Semal, C., & Paillette, M. (1985). Differences in patterns of pup care in mice. V-Pup ultrasonic emissions and pup care behavior. Physiology & Behavior, 35, 167-174. https://doi.org/10.1016/0031-9384(85)90331-2.
Colonnello, V., Petrocchi, N., Farinelli, M., & Ottaviani, C. (2017). Positive social interactions in a lifespan perspective with a focus on opioidergic and oxytocinergic systems: Implications for neuroprotection. Current Neuropharmacology, 15, 543-561. https://doi.org/10.2174/1570159X14666160816120209.
Costa, H. H., Vilela, F. C., & Giusti-Paiva, A. (2013). Continuous central infusion of cannabinoid receptor agonist WIN 55,212-2 decreases maternal care in lactating rats: Consequences for fear conditioning in adulthood males. Behavioural Brain Research, 257, 31-38. https://doi.org/10.1016/j.bbr.2013.09.022.
Cravatt, B. F., Demarest, K., Patricelli, M. P., Bracey, M. H., Giang, D. K., Martin, B. R., & Lichtman, A. H. (2001). Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 98, 9371-9376. https://doi.org/10.1073/pnas.161191698.
Cunningham, C. L., Gremel, C. M., & Groblewski, P. A. (2006). Drug-induced conditioned place preference and aversion in mice. Nature Protocols, 1, 1662-1670. https://doi.org/10.1038/nprot.2006.279.
Cunningham, C. L., Howard, M. A., Gill, S. J., Rubinstein, M., Low, M. J., & Grandy, D. K. (2000). Ethanol-conditioned place preference is reduced in dopamine D2 receptor-deficient mice. Pharmacology, Biochemistry, and Behavior, 67, 693-699. https://doi.org/10.1016/S0091-3057(00)00414-7.
Cuomo, V., Cagiano, R., De Salvia, M. A., Restani, P., Galimberti, R., Colonna, S., Racagni, G., & Galli, C. L. (1988). Ultrasonic vocalization in rat pups as a marker of behavioral development: An investigation of the effects of drugs influencing brain opioid system. Neurotoxicology and Teratology, 10, 465-469. https://doi.org/10.1016/0892-0362(88)90009-8.
Dai, Y. C., Zhang, H. F., Schon, M., Bockers, T. M., Han, S. P., Han, J. S., & Zhang, R. (2018). Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Frontiers in Cellular Neuroscience, 12, 355. https://doi.org/10.3389/fncel.2018.00355.
D'Amato, F. R. (2021). Evaluation of mu-opioid system functionality in mouse pups: Ultrasonic vocalizations as an index of infant attachment. Methods in Molecular Biology, 2201, 259-265.
D'Amato, F. R., Scalera, E., Sarli, C., & Moles, A. (2005). Pups call, mothers rush: Does maternal responsiveness affect the amount of ultrasonic vocalizations in mouse pups? Behavior Genetics, 35, 103-112. https://doi.org/10.1007/s10519-004-0860-9.
De Crescenzo, F., Postorino, V., Siracusano, M., Riccioni, A., Armando, M., Curatolo, P., & Mazzone, L. (2019). Autistic symptoms in schizophrenia spectrum disorders: A systematic review and meta-analysis. Frontiers in Psychiatry, 10, 78. https://doi.org/10.3389/fpsyt.2019.00078.
Deacon, R. M., & Rawlins, J. N. (2006). T-maze alternation in the rodent. Nature Protocols, 1, 7-12. https://doi.org/10.1038/nprot.2006.2.
DiBattista, D., & Mercier, S. (1999). Role of learning in the selection of dietary protein in the golden hamster (Mesocricetus auratus). Behavioral Neuroscience, 113, 574-586. https://doi.org/10.1037/0735-7044.113.3.574.
Dolen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501, 179-184. https://doi.org/10.1038/nature12518.
Donovan, B. M., Spracklen, C. N., Schweizer, M. L., Ryckman, K. K., & Saftlas, A. F. (2016). Intimate partner violence during pregnancy and the risk for adverse infant outcomes: A systematic review and meta-analysis. BJOG: An International Journal of Obstetrics and Gynaecology, 123, 1289-1299.
Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: Impact of social versus isolate housing of subjects and partners. Developmental Psychobiology, 45, 153-162. https://doi.org/10.1002/dev.20025.
Dunbar, R. I. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36, 562-572. https://doi.org/10.1080/03014460902960289.
Dutton, D., & Painter, S. L. (1981). Traumatic bonding: The development of emotional attachments in battered women and other relationships of intermittent abuse. Victimology: An. International Journal, 6(1-4), 139-155.
Egerton, A., Reid, L., McGregor, S., Cochran, S. M., Morris, B. J., & Pratt, J. A. (2008). Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology (Berl), 198, 37-49. https://doi.org/10.1007/s00213-008-1071-5.
Everitt, B. J., & Robbins, T. W. (2000). Second-order schedules of drug reinforcement in rats and monkeys: Measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology (Berl), 153, 17-30. https://doi.org/10.1007/s002130000566.
Fahrbach, S. E., Morrell, J. I., & Pfaff, D. W. (1985). Possible role for endogenous oxytocin in estrogen-facilitated maternal behavior in rats. Neuroendocrinology, 40, 526-532. https://doi.org/10.1159/000124125.
Fang, Q., & Wang, J. (2017). Place preferences associated with pups or cocaine change the expression of D2R, V1aR and OTR in the NAcc and MeA and the levels of plasma AVP, OT, T and E2 in mandarin vole fathers. Psychoneuroendocrinology, 80, 147-154. https://doi.org/10.1016/j.psyneuen.2017.03.001.
Feldman, R. (2017). the neurobiology of human attachments. Trends in Cognitive Sciences, 21, 80-99. https://doi.org/10.1016/j.tics.2016.11.007.
Felicio, L. F., Mann, P. E., & Bridges, R. S. (1991). Intracerebroventricular cholecystokinin infusions block beta-endorphin-induced disruption of maternal behavior. Pharmacology, Biochemistry, and Behavior, 39, 201-204. https://doi.org/10.1016/0091-3057(91)90422-X.
Ferguson, J. N., Young, L. J., Hearn, E. F., Matzuk, M. M., Insel, T. R., & Winslow, J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284-288. https://doi.org/10.1038/77040.
Ferguson, J. N., Young, L. J., & Insel, T. R. (2002). The neuroendocrine basis of social recognition. Frontiers in Neuroendocrinology, 23, 200-224. https://doi.org/10.1006/frne.2002.0229.
Ferreira, A. A. D., Uriarte, N., Pereira, M. & Zuluaga, M. J. (2012) The rat as a model for studying maternal behavior: Behavioral Animal Models, 73-88.
Ferris, C. F., Kulkarni, P., Sullivan, J. M. Jr, Harder, J. A., Messenger, T. L., & Febo, M. (2005). Pup suckling is more rewarding than cocaine: Evidence from functional magnetic resonance imaging and three-dimensional computational analysis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 149-156. https://doi.org/10.1523/JNEUROSCI.3156-04.2005.
Fervaha, G., Foussias, G., Agid, O., & Remington, G. (2015). Motivational deficits in early schizophrenia: Prevalent, persistent, and key determinants of functional outcome. Schizophrenia Research, 166, 9-16. https://doi.org/10.1016/j.schres.2015.04.040.
Fett, A. K., Shergill, S. S., Joyce, D. W., Riedl, A., Strobel, M., Gromann, P. M., & Krabbendam, L. (2012). To trust or not to trust: The dynamics of social interaction in psychosis. Brain: A Journal of Neurology, 135, 976-984. https://doi.org/10.1093/brain/awr359.
Fields, H. L., & Margolis, E. B. (2015). Understanding opioid reward. Trends in Neurosciences, 38, 217-225. https://doi.org/10.1016/j.tins.2015.01.002.
Fleming, A. S., Korsmit, M., & Deller, M. (1994). Rat pups are potent reinforcers to the maternal animal: Effects of experience, parity, hormones, and dopamine functions. Psychobiology, 22, 44-53.
Frohmader, K. S., Pitchers, K. K., Balfour, M. E., & Coolen, L. M. (2010). Mixing pleasures: Review of the effects of drugs on sex behavior in humans and animal models. Hormones and Behavior, 58, 149-162. https://doi.org/10.1016/j.yhbeh.2009.11.009.
Fulford, D., Campellone, T., & Gard, D. E. (2018). Social motivation in schizophrenia: How research on basic reward processes informs and limits our understanding. Clinical Psychology Review, 63, 12-24. https://doi.org/10.1016/j.cpr.2018.05.007.
Gigliucci, V., Leonzino, M., Busnelli, M., Luchetti, A., Palladino, V. S., D'Amato, F. R., & Chini, B. (2014). Region specific up-regulation of oxytocin receptors in the opioid oprm1 (-/-) mouse model of autism. Frontiers in Pediatrics, 2, 91.
Golub, M. S., Sassenrath, E. N., & Chapman, L. F. (1981). Mother-infant interaction in rhesus monkeys treated clinically with delta-9-tetrahydrocannabinol. Child Development, 52, 389-392.
Gourion, D., Goldberger, C., Olie, J. P., Loo, H., & Krebs, M. O. (2004). Neurological and morphological anomalies and the genetic liability to schizophrenia: A composite phenotype. Schizophrenia Research, 67, 23-31. https://doi.org/10.1016/S0920-9964(03)00099-9.
Grimm, C. T., & Bridges, R. S. (1983). Opiate regulation of maternal behavior in the rat. Pharmacology, Biochemistry, and Behavior, 19, 609-616. https://doi.org/10.1016/0091-3057(83)90336-2.
Gromann, P. M., Heslenfeld, D. J., Fett, A. K., Joyce, D. W., Shergill, S. S., & Krabbendam, L. (2013). Trust versus paranoia: Abnormal response to social reward in psychotic illness. Brain: A Journal of Neurology, 136, 1968-1975.
Gunaydin, L. A., Grosenick, L., Finkelstein, J. C., Kauvar, I. V., Fenno, L. E., Adhikari, A., Lammel, S., Mirzabekov, J. J., Airan, R. D., Zalocusky, K. A., Tye, K. M., Anikeeva, P., Malenka, R. C., & Deisseroth, K. (2014). Natural neural projection dynamics underlying social behavior. Cell, 157, 1535-1551. https://doi.org/10.1016/j.cell.2014.05.017.
Hahn, A. H., Merullo, D. P., Spool, J. A., Angyal, C. S., Stevenson, S. A., & Riters, L. V. (2017). Song-associated reward correlates with endocannabinoid-related gene expression in male European starlings (Sturnus vulgaris). Neuroscience, 346, 255-266. https://doi.org/10.1016/j.neuroscience.2017.01.028.
Hahn, M. E., & Lavooy, M. J. (2005). A review of the methods of studies on infant ultrasound production and maternal retrieval in small rodents. Behavior Genetics, 35, 31-52. https://doi.org/10.1007/s10519-004-0854-7.
Hall, F. S. (1998). Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Critical Reviews in Neurobiology, 12, 129-162. https://doi.org/10.1615/CritRevNeurobiol.v12.i1-2.50.
Haney, M., & Miczek, K. A. (1989). Morphine effects on maternal aggression, pup care and analgesia in mice. Psychopharmacology (Berl), 98, 68-74. https://doi.org/10.1007/BF00442008.
Hansen, S., Harthon, C., Wallin, E., Lofberg, L., & Svensson, K. (1991a). The effects of 6-OHDA-induced dopamine depletions in the ventral or dorsal striatum on maternal and sexual behavior in the female rat. Pharmacology, Biochemistry, and Behavior, 39, 71-77. https://doi.org/10.1016/0091-3057(91)90399-M.
Hansen, S., Harthon, C., Wallin, E., Lofberg, L., & Svensson, K. (1991b). Mesotelencephalic dopamine system and reproductive behavior in the female rat: Effects of ventral tegmental 6-hydroxydopamine lesions on maternal and sexual responsiveness. Behavioral Neuroscience, 105, 588-598. https://doi.org/10.1037/0735-7044.105.4.588.
Hanson, J. L., Adluru, N., Chung, M. K., Alexander, A. L., Davidson, R. J., & Pollak, S. D. (2013). Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Development, 84, 1566-1578. https://doi.org/10.1111/cdev.12069.
Hara, Y., Takuma, K., Takano, E., Katashiba, K., Taruta, A., Higashino, K., Hashimoto, H., Ago, Y., & Matsuda, T. (2015). Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model. Behavioural Brain Research, 289, 39-47. https://doi.org/10.1016/j.bbr.2015.04.022.
Hauser, H., & Gandelman, R. (1985). Lever pressing for pups: Evidence for hormonal influence upon maternal behavior of mice. Hormones and Behavior, 19, 454-468. https://doi.org/10.1016/0018-506X(85)90041-8.
Hawker, D. S., & Boulton, M. J. (2000). Twenty years' research on peer victimization and psychosocial maladjustment: A meta-analytic review of cross-sectional studies. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 41, 441-455. https://doi.org/10.1111/1469-7610.00629.
Hernandez-Lallement, J., van Wingerden, M., Marx, C., Srejic, M., & Kalenscher, T. (2014). Rats prefer mutual rewards in a prosocial choice task. Frontiers in Neuroscience, 8, 443.
Hoffman, D. C., & Beninger, R. J. (1989). The effects of selective dopamine D1 or D2 receptor antagonists on the establishment of agonist-induced place conditioning in rats. Pharmacology, Biochemistry, and Behavior, 33, 273-279. https://doi.org/10.1016/0091-3057(89)90499-1.
Hollis, C. (2003). Developmental precursors of child- and adolescent-onset schizophrenia and affective psychoses: Diagnostic specificity and continuity with symptom dimensions. The British Journal of Psychiatry: The Journal of Mental Science, 182, 37-44. https://doi.org/10.1192/bjp.182.1.37.
Hung, L. W., Neuner, S., Polepalli, J. S., Beier, K. T., Wright, M., Walsh, J. J., Lewis, E. M., Luo, L., Deisseroth, K., Dölen, G., & Malenka, R. C. (2017). Gating of social reward by oxytocin in the ventral tegmental area. Science, 357, 1406-1411. https://doi.org/10.1126/science.aan4994.
Ikemoto, S., & Panksepp, J. (1992). The effects of early social isolation on the motivation for social play in juvenile rats. Developmental Psychobiology, 25, 261-274. https://doi.org/10.1002/dev.420250404.
Insel, T. R. (2003). Is social attachment an addictive disorder? Physiology & Behavior, 79, 351-357. https://doi.org/10.1016/S0031-9384(03)00148-3.
Insel, T. R., & Winslow, J. T. (1991). Central administration of oxytocin modulates the infant rat's response to social isolation. European Journal of Pharmacology, 203, 149-152. https://doi.org/10.1016/0014-2999(91)90806-2.
Insel, T. R., & Young, L. J. (2001). The neurobiology of attachment. Nature Reviews. Neuroscience, 2, 129-136.
Jirkof, P., Bratcher, N., Medina, L., Strasburg, D., Ebert, P., & Gaskill, B. N. (2020). The effect of group size, age and handling frequency on inter-male aggression in CD 1 mice. Scientific Reports, 10, 2253. https://doi.org/10.1038/s41598-020-59012-4.
Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., O'Donovan, M., Correll, C. U., Kane, J. M., van Os, J., & Insel, T. R. (2015). Schizophrenia. Nature Reviews Disease Primers, 1, 15067. https://doi.org/10.1038/nrdp.2015.67.
Katayama, T., Okamoto, M., Suzuki, Y., Hoshino, K. Y., & Jodo, E. (2013). Phencyclidine affects firing activity of ventral tegmental area neurons that are related to reward and social behaviors in rats. Neuroscience, 240, 336-348. https://doi.org/10.1016/j.neuroscience.2013.02.047.
Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., Rana, G. L., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V., & Piomelli, D. (2003). Modulation of anxiety through blockade of anandamide hydrolysis. Nature Medicine, 9, 76-81. https://doi.org/10.1038/nm803.
Kazdoba, T. M., Leach, P. T., Yang, M., Silverman, J. L., Solomon, M., & Crawley, J. N. (2016). Translational mouse models of autism: advancing toward pharmacological therapeutics. Current Topics in Behavioral Neurosciences, 28, 1-52.
Kehoe, P., & Blass, E. M. (1986). Opioid-mediation of separation distress in 10-day-old rats: Reversal of stress with maternal stimuli. Developmental Psychobiology, 19, 385-398. https://doi.org/10.1002/dev.420190410.
Kehoe, P., & Boylan, C. B. (1994). Behavioral effects of kappa-opioid-receptor stimulation on neonatal rats. Behavioral Neuroscience, 108, 418-423. https://doi.org/10.1037/0735-7044.108.2.418.
Kelley, A. E., Baldo, B. A., Pratt, W. E., & Will, M. J. (2005). Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiology & Behavior, 86, 773-795. https://doi.org/10.1016/j.physbeh.2005.08.066.
Kenkel, W. M., Perkeybile, A.-M., Yee, J. R., Pournajafi-Nazarloo, H., Lillard, T. S., Ferguson, E. F., Wroblewski, K. L., Ferris, C. F., Carter, C. S., & Connelly, J. J. (2019). Behavioral and epigenetic consequences of oxytocin treatment at birth. Science Advances, 5, eaav2244.-https://doi.org/10.1126/sciadv.aav2244.
Kent, K., Arientyl, V., Khachatryan, M. M., & Wood, R. I. (2013). Oxytocin induces a conditioned social preference in female mice. Journal of Neuroendocrinology, 25, 803-810. https://doi.org/10.1111/jne.12075.
Kentrop, J., Kalamari, A., Danesi, C. H., Kentrop, J. J., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Joëls, M., & van der Veen, R. (2020). Pro-social preference in an automated operant two-choice reward task under different housing conditions: Exploratory studies on pro-social decision making. Developmental Cognitive Neuroscience, 45, 100827.-https://doi.org/10.1016/j.dcn.2020.100827.
Kerr, D. M., Downey, L., Conboy, M., Finn, D. P., & Roche, M. (2013). Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behavioural Brain Research, 249, 124-132. https://doi.org/10.1016/j.bbr.2013.04.043.
Kerr, D. M., Gilmartin, A., & Roche, M. (2016). Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharmacological Research, 113, 228-235. https://doi.org/10.1016/j.phrs.2016.08.033.
Kincaid, D. L., Doris, M., Shannon, C., & Mulholland, C. (2017). What is the prevalence of autism spectrum disorder and ASD traits in psychosis? A systematic review. Psychiatry Research, 250, 99-105. https://doi.org/10.1016/j.psychres.2017.01.017.
Kofman, O., Lan, A., Raykin, E., Zega, K., & Brodski, C. (2020). Developmental and social deficits and enhanced sensitivity to prenatal chlorpyrifos in PON1-/- mouse pups and adults. PLoS One, 15, e0239738. https://doi.org/10.1371/journal.pone.0239738.
Kohli, S., King, M. V., Williams, S., Edwards, A., Ballard, T. M., Steward, L. J., Alberati, D., & Fone, K. C. F. (2019). Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 44, 295-305. https://doi.org/10.1038/s41386-018-0171-0.
Kosaki, Y., & Watanabe, S. (2016). Conditioned social preference, but not place preference, produced by intranasal oxytocin in female mice. Behavioral Neuroscience, 130, 182-195. https://doi.org/10.1037/bne0000139.
Kovacs, G. L., Sarnyai, Z., Barbarczi, E., Szabo, G., & Telegdy, G. (1990). The role of oxytocin-dopamine interactions in cocaine-induced locomotor hyperactivity. Neuropharmacology, 29, 365-368. https://doi.org/10.1016/0028-3908(90)90095-9.
Kovacs, G. L., Sarnyai, Z., & Szabo, G. (1998). Oxytocin and addiction: A review. Psychoneuroendocrinology, 23, 945-962. https://doi.org/10.1016/S0306-4530(98)00064-X.
Kummer, K., Klement, S., Eggart, V., Mayr, M. J., Saria, A., & Zernig, G. (2011). Conditioned place preference for social interaction in rats: Contribution of sensory components. Frontiers in Behavioral Neuroscience, 5, 80.
Lan, A., Kalimian, M., Amram, B., & Kofman, O. (2017). Prenatal chlorpyrifos leads to autism-like deficits in C57Bl6/J mice. Environmental Health: A Global Access Science Source, 16, 43., https://doi.org/10.1186/s12940-017-0251-3.
Lan, A., Stein, D., Portillo, M., Toiber, D., & Kofman, O. (2019). Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos. Behavioral and Brain Functions: BBF, 15, 2. https://doi.org/10.1186/s12993-019-0153-3.
Langleben, D. D., Ruparel, K., Elman, I., Loughead, J. W., Busch, E. L., Cornish, J., Lynch, K. G., Nuwayser, E. S., Childress, A. R., & O'Brien, C. P. (2014). Extended-release naltrexone modulates brain response to drug cues in abstinent heroin-dependent patients. Addiction Biology, 19, 262-271. https://doi.org/10.1111/j.1369-1600.2012.00462.x.
Le Foll, B., Goldberg, S. R., & Sokoloff, P. (2005). The dopamine D3 receptor and drug dependence: Effects on reward or beyond? Neuropharmacology, 49, 525-541.
Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89, 1379-1412. https://doi.org/10.1152/physrev.00005.2009.
Lee, A., Clancy, S., & Fleming, A. S. (2000). Mother rats bar-press for pups: Effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behavioural Brain Research, 108, 215-231.
Lee, A., Li, M., Watchus, J., & Fleming, A. S. (1999). Neuroanatomical basis of maternal memory in postpartum rats: Selective role for the nucleus accumbens. Behavioral Neuroscience, 113, 523-538. https://doi.org/10.1037/0735-7044.113.3.523.
Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M., & Koenig, J. I. (2005). Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 30, 1883-1894. https://doi.org/10.1038/sj.npp.1300722.
Lemos, C., Salti, A., Amaral, I. M., Fontebasso, V., Singewald, N., Dechant, G., Hofer, A., & El Rawas, R. (2020). Social interaction reward in rats has anti-stress effects. Addiction Biology, 26(1), e12878. https://doi.org/10.1111/adb.12878.
Leong, K. C., Cox, S., King, C., Becker, H., & Reichel, C. M. (2018). Oxytocin and rodent models of addiction. International Review of Neurobiology, 140, 201-247.
Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011). Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 36, 316-338. https://doi.org/10.1038/npp.2010.156.
Li, M., Budin, R., Fleming, A. S., & Kapur, S. (2005). Effects of chronic typical and atypical antipsychotic drug treatment on maternal behavior in rats. Schizophrenia Research, 75, 325-336. https://doi.org/10.1016/j.schres.2004.09.012.
Li, M., Davidson, P., Budin, R., Kapur, S., & Fleming, A. S. (2004). Effects of typical and atypical antipsychotic drugs on maternal behavior in postpartum female rats. Schizophrenia Research, 70, 69-80. https://doi.org/10.1016/j.schres.2003.09.013.
Lichtenberg, N. T., Lee, B., Kashtelyan, V.,Chappa, B. S., Girma, H. T., Green, E. A., Kantor, S., Lagowala, D. A., Myers, M. A., Potemri, D., Pecukonis, M. G., Tesfay, R. T., Walters, M. S., Zhao, A. C., Blair, R. J. R., Cheer, J. F., & Roesch, M. R. (2018). Rat behavior and dopamine release are modulated by conspecific distress. eLife, 7, e38090.
Lipina, T. V., Fletcher, P. J., Lee, F. H., Wong, A. H., & Roder, J. C. (2013). Disrupted-in-schizophrenia-1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and beta-arrestin-1,2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38, 423-436.
Liu, Y., Aragona, B. J., Young, K. A., Dietz, D. M., Kabbaj, M., Mazei-Robison, M., Nestler, E. J., & Wang, Z. (2010). Nucleus accumbens dopamine mediates amphetamine-induced impairment of social bonding in a monogamous rodent species. Proceedings of the National Academy of Sciences of the United States of America, 107, 1217-1222. https://doi.org/10.1073/pnas.0911998107.
Luoma, S., Hakko, H., Ollinen, T., Jarvelin, M. R., & Lindeman, S. (2008). Association between age at onset and clinical features of schizophrenia: The Northern Finland 1966 birth cohort study. European Psychiatry: The Journal of the Association of European Psychiatrists, 23, 331-335. https://doi.org/10.1016/j.eurpsy.2008.03.005.
Magnusson, J. E., & Fleming, A. S. (1995). Rat pups are reinforcing to the maternal rat: Role of sensory cues. Psychobiology, 23(1), 69-75.
Manduca, A., Campolongo, P., & Trezza, V. (2012). Cannabinoid modulation of mother-infant interaction: Is it just about milk? Reviews in the Neurosciences, 23, 707-722. https://doi.org/10.1515/revneuro-2012-0074.
Manduca, A., Lassalle, O., Sepers, M., Campolongo, P., Cuomo, V., Marsicano, G., Kieffer, B., Vanderschuren, L. J. M. J., Trezza, V., & Manzoni, O. J. J. (2016). Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play. Frontiers in Behavioral Neuroscience, 10, 211. https://doi.org/10.3389/fnbeh.2016.00211.
Manduca, A., Morena, M., Campolongo, P., Servadio, M., Palmery, M., Trabace, L., Hill, M. N., Vanderschuren, L. J. M. J., Cuomo, V., & Trezza, V. (2015). Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 25, 1362-1374. https://doi.org/10.1016/j.euroneuro.2015.04.005.
Manduca, A., Servadio, M., Damsteegt, R., Campolongo, P., Vanderschuren, L. J., & Trezza, V. (2016). Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41, 2215-2223. https://doi.org/10.1038/npp.2016.22.
Manduca, A., Servadio, M., Melancia, F., Schiavi, S., Manzoni, O. J., & Trezza, V. (2020). Sex-specific behavioural deficits induced at early life by prenatal exposure to the cannabinoid receptor agonist WIN55, 212-2 depend on mGlu5 receptor signalling. British Journal of Pharmacology, 177, 449-463. https://doi.org/10.1111/bph.14879.
Mann, P. E., Felicio, L. F., & Bridges, R. S. (1995). Investigation into the role of cholecystokinin (CCK) in the induction and maintenance of maternal behavior in rats. Hormones and Behavior, 29, 392-406. https://doi.org/10.1006/hbeh.1995.1027.
Mann, P. E., Kinsley, C. H., & Bridges, R. S. (1991). Opioid receptor subtype involvement in maternal behavior in lactating rats. Neuroendocrinology, 53, 487-492. https://doi.org/10.1159/000125762.
Marlin, B. J., Mitre, M., D’amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520, 499-504. https://doi.org/10.1038/nature14402.
Martin, L., Sample, H., Gregg, M., & Wood, C. (2014). Validation of operant social motivation paradigms using BTBR T+tf/J and C57BL/6J inbred mouse strains. Brain and Behavior, 4, 754-764.
Martin-Soelch, C., Linthicum, J., & Ernst, M. (2007). Appetitive conditioning: Neural bases and implications for psychopathology. Neuroscience and Biobehavioral Reviews, 31, 426-440. https://doi.org/10.1016/j.neubiorev.2006.11.002.
Mason, W. A., Hollis, J. H., & Sharpe, L. G. (1962). Differential responses of chimpanzees to social stimulation. Journal of Comparative and Physiological Psychology, 55, 1105-1110. https://doi.org/10.1037/h0045249.
Mason, W. A., Saxon, S. V., & Sharpe, L. G. (1963). Preferential responses of young chimpanzees to food and social rewards. The Psychological Record, 13, 341-345. https://doi.org/10.1007/BF03393535.
Matthews, G. A., Nieh, E. H., Vander Weele, C. M., Halbert, S. A., Pradhan, R. V., Yosafat, A. S., Glober, G. F., Izadmehr, E. M., Thomas, R. E., Lacy, G. D., Wildes, C. P., Ungless, M. A., & Tye, K. M. (2016). Dorsal raphe dopamine neurons represent the experience of social isolation. Cell, 164, 617-631. https://doi.org/10.1016/j.cell.2015.12.040.
Mattson, B. J., Williams, S., Rosenblatt, J. S., & Morrell, J. I. (2001). Comparison of two positive reinforcing stimuli: Pups and cocaine throughout the postpartum period. Behavioral Neuroscience, 115, 683-694. https://doi.org/10.1037/0735-7044.115.3.683.
Mattson, B. J., Williams, S. E., Rosenblatt, J. S., & Morrell, J. I. (2003). Preferences for cocaine- or pup-associated chambers differentiates otherwise behaviorally identical postpartum maternal rats. Psychopharmacology (Berl), 167, 1-8. https://doi.org/10.1007/s00213-002-1351-4.
Mayer, A. D., Faris, P. L., Komisaruk, B. R., & Rosenblatt, J. S. (1985). Opiate antagonism reduces placentophagia and pup cleaning by parturient rats. Pharmacology, Biochemistry, and Behavior, 22, 1035-1044. https://doi.org/10.1016/0091-3057(85)90314-4.
Mayer, A. D., & Rosenblatt, J. S. (1980). Hormonal interaction with stimulus and situational factors in the initiation of maternal behavior in nonpregnant rats. Journal of Comparative and Physiological Psychology, 94, 1040-1059.
McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A computational substrate for incentive salience. Trends in Neurosciences, 26, 423-428. https://doi.org/10.1016/S0166-2236(03)00177-2.
McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J., & Crawley, J. N. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7, 152-163. https://doi.org/10.1111/j.1601-183X.2007.00330.x.
McGregor, I. S., & Bowen, M. T. (2012). Breaking the loop: Oxytocin as a potential treatment for drug addiction. Hormones and Behavior, 61, 331-339. https://doi.org/10.1016/j.yhbeh.2011.12.001.
McGregor, I. S., Dastur, F. N., McLellan, R. A., & Brown, R. E. (1996). Cannabinoid modulation of rat pup ultrasonic vocalizations. European Journal of Pharmacology, 313, 43-49. https://doi.org/10.1016/0014-2999(96)00511-0.
Meier, M., Reinermann, R., Warlich, J., & Manteuffel, G. (1998). An automated training device for pattern discrimination learning of group-housed gerbils. Physiology & Behavior, 63, 497-498. https://doi.org/10.1016/S0031-9384(97)00468-X.
Melancia, F., Schiavi, S., Servadio, M., Cartocci, V., Campolongo, P., Palmery, M., Pallottini, V., & Trezza, V. (2018). Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. British Journal of Pharmacology, 175, 3699-3712. https://doi.org/10.1111/bph.14435.
Miczek, K. A., Yap, J. J., & Covington, H. E. 3rd (2008). Social stress, therapeutics and drug abuse: Preclinical models of escalated and depressed intake. Pharmacology & Therapeutics, 120, 102-128. https://doi.org/10.1016/j.pharmthera.2008.07.006.
Miller, T. V., & Caldwell, H. K. (2015). Oxytocin during development: Possible organizational effects on behavior. Frontiers in Endocrinology, 6, 76. https://doi.org/10.3389/fendo.2015.00076.
Miranda-Paiva, C. M., Canteras, N. S., Sukikara, M. H., Nasello, A. G., Mackowiak, I. I., & Felicio, L. F. (2007). Periaqueductal gray cholecystokinin infusions block morphine-induced disruption of maternal behavior. Peptides, 28, 657-662. https://doi.org/10.1016/j.peptides.2006.11.005.
Miranda-Paiva, C. M., & Felicio, L. F. (1999). Differential role of cholecystokinin receptor subtypes in opioid modulation of ongoing maternal behavior. Pharmacology, Biochemistry, and Behavior, 64, 165-169. https://doi.org/10.1016/S0091-3057(99)00117-3.
Miranda-Paiva, C. M., Nasello, A. G., Yin, A. J., & Felicio, L. F. (2001). Morphine pretreatment increases opioid inhibitory effects on maternal behavior. Brain Research Bulletin, 55, 501-505. https://doi.org/10.1016/S0361-9230(01)00549-4.
Miranda-Paiva, C. M., Ribeiro-Barbosa, E. R., Canteras, N. S., & Felicio, L. F. (2003). A role for the periaqueductal grey in opioidergic inhibition of maternal behaviour. The European Journal of Neuroscience, 18, 667-674. https://doi.org/10.1046/j.1460-9568.2003.02794.x.
Mogg, K., Bradley, B. P., O'Neill, B., Bani, M., Merlo-Pich, E., Koch, A., Bullmore, E. T., & Nathan, P. J. (2012). Effect of dopamine D(3) receptor antagonism on approach responses to food cues in overweight and obese individuals. Behavioural Pharmacology, 23, 603-608. https://doi.org/10.1097/FBP.0b013e3283566a4a.
Moles, A., Kieffer, B. L., & D'Amato, F. R. (2004). Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science, 304, 1983-1986.
Moschovakis, A., Liakopoulos, D., Armaganidis, A., Kapsambelis, V., Papanikolaou, G., & Petroulakis, G. (1978). Cannabis interferes with nest-building behavior in mice. Psychopharmacology (Berl), 58, 181-183. https://doi.org/10.1007/BF00426904.
Moura, L. M., Canteras, N. S., Sukikara, M. H., & Felicio, L. F. (2010). Morphine infusions into the rostrolateral periaqueductal gray affect maternal behaviors. Brazilian Journal of Medical and Biological Research, 43(9), 899-905.
Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M., & Okado, N. (2002). Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: Putative animal models for autism. Pediatric Research, 52, 576-579.
Navarro, M., Rubio, P., & de Fonseca, F. R. (1995). Behavioural consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology (Berl), 122, 1-14. https://doi.org/10.1007/BF02246436.
Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant-mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience and Biobehavioral Reviews, 22, 437-452. https://doi.org/10.1016/S0149-7634(97)00052-3.
Niesink, R. J., & Van Ree, J. M. (1989). Involvement of opioid and dopaminergic systems in isolation-induced pinning and social grooming of young rats. Neuropharmacology, 28, 411-418. https://doi.org/10.1016/0028-3908(89)90038-5.
Noirot, E. (1972). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5, 371-387. https://doi.org/10.1002/dev.420050410.
Normansell, L., & Panksepp, J. (1990). Effects of morphine and naloxone on play-rewarded spatial discrimination in juvenile rats. Developmental Psychobiology, 23, 75-83. https://doi.org/10.1002/dev.420230108.
Novick, A. M., Levandowski, M. L., Laumann, L. E., Philip, N. S., Price, L. H., & Tyrka, A. R. (2018). The effects of early life stress on reward processing. Journal of Psychiatric Research, 101, 80-103. https://doi.org/10.1016/j.jpsychires.2018.02.002.
Numan, M. (2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behavioral and Cognitive Neuroscience Reviews, 5, 163-190. https://doi.org/10.1177/1534582306288790.
Numan, M., Numan, M. J., Pliakou, N., Stolzenberg, D. S., Mullins, O. J., Murphy, J. M., & Smith, C. D. (2005). The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behavioral Neuroscience, 119, 1588-1604. https://doi.org/10.1037/0735-7044.119.6.1588.
Numan, M., & Stolzenberg, D. S. (2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30, 46-64. https://doi.org/10.1016/j.yfrne.2008.10.002.
Numan, M., Stolzenberg, D. S., Dellevigne, A. A., Correnti, C. M., & Numan, M. J. (2009). Temporary inactivation of ventral tegmental area neurons with either muscimol or baclofen reversibly disrupts maternal behavior in rats through different underlying mechanisms. Behavioral Neuroscience, 123, 740-751. https://doi.org/10.1037/a0016204.
O'Connor, E. C., Chapman, K., Butler, P., & Mead, A. N. (2011). The predictive validity of the rat self-administration model for abuse liability. Neuroscience and Biobehavioral Reviews, 35, 912-938. https://doi.org/10.1016/j.neubiorev.2010.10.012.
Oddi, D., Crusio, W. E., D'Amato, F. R., & Pietropaolo, S. (2013). Monogenic mouse models of social dysfunction: Implications for autism. Behavioural Brain Research, 251, 75-84. https://doi.org/10.1016/j.bbr.2013.01.002.
Oswalt, G. L., & Meier, G. W. (1975). Olfactory, thermal, and tactual influences on infantile ultrasonic vocalization in rats. Developmental Psychobiology, 8, 129-135. https://doi.org/10.1002/dev.420080205.
Panksepp, J., & Beatty, W. W. (1980). Social deprivation and play in rats. Behavioral and Neural Biology, 30, 197-206. https://doi.org/10.1016/S0163-1047(80)91077-8.
Panksepp, J., & Burgdorf, J. (2000). 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: Effects of social housing and genetic variables. Behavioural Brain Research, 115, 25-38. https://doi.org/10.1016/S0166-4328(00)00238-2.
Panksepp, J., Herman, B., Conner, R., Bishop, P., & Scott, J. P. (1978). The biology of social attachments: Opiates alleviate separation distress. Biological Psychiatry, 13, 607-618.
Panksepp, J., Herman, B. H., Vilberg, T., Bishop, P., & DeEskinazi, F. G. (1980). Endogenous opioids and social behavior. Neuroscience and Biobehavioral Reviews, 4, 473-487. https://doi.org/10.1016/0149-7634(80)90036-6.
Panksepp, J., Knutson, B., & Burgdorf, J. (2002). The role of brain emotional systems in addictions: A neuro-evolutionary perspective and new 'self-report' animal model. Addiction, 97, 459-469. https://doi.org/10.1046/j.1360-0443.2002.00025.x.
Panksepp, J., Nelson, E., & Siviy, S. (1994). Brain opioids and mother-infant social motivation. Acta Paediatrica. Supplement, 397, 40-46. https://doi.org/10.1111/j.1651-2227.1994.tb13264.x.
Panksepp, J., Siviy, S., & Normansell, L. (1984). The psychobiology of play: Theoretical and methodological perspectives. Neuroscience and Biobehavioral Reviews, 8, 465-492. https://doi.org/10.1016/0149-7634(84)90005-8.
Panlilio, L. V., & Goldberg, S. R. (2007). Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction, 102, 1863-1870. https://doi.org/10.1111/j.1360-0443.2007.02011.x.
Parada, M., King, S., Li, M., & Fleming, A. S. (2008). The roles of accumbal dopamine D1 and D2 receptors in maternal memory in rats. Behavioral Neuroscience, 122, 368-376. https://doi.org/10.1037/0735-7044.122.2.368.
Paredes, R. G. (2009). Evaluating the neurobiology of sexual reward. ILAR Journal, 50, 15-27. https://doi.org/10.1093/ilar.50.1.15.
Paredes, R. G. (2014). Opioids and sexual reward. Pharmacology, Biochemistry, and Behavior, 121, 124-131. https://doi.org/10.1016/j.pbb.2013.11.004.
Pearson, B. L., Bettis, J. K., Meyza, K. Z., Yamamoto, L. Y., Blanchard, D. C., & Blanchard, R. J. (2012). Absence of social conditioned place preference in BTBR T+tf/J mice: Relevance for social motivation testing in rodent models of autism. Behavioural Brain Research, 233, 99-104. https://doi.org/10.1016/j.bbr.2012.04.040.
Peartree, N. A., Hood, L. E., Thiel, K. J., Sanabria, F., Pentkowski, N. S., Chandler, K. N., & Neisewander, J. L. (2012). Limited physical contact through a mesh barrier is sufficient for social reward-conditioned place preference in adolescent male rats. Physiology & Behavior, 105, 749-756. https://doi.org/10.1016/j.physbeh.2011.10.001.
Pedersen, C. A., & Boccia, M. L. (2003). Oxytocin antagonism alters rat dams' oral grooming and upright posturing over pups. Physiology & Behavior, 80, 233-241. https://doi.org/10.1016/j.physbeh.2003.07.011.
Pedersen, C. A., & Prange, A. J. Jr (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences of the United States of America, 76, 6661-6665. https://doi.org/10.1073/pnas.76.12.6661.
Pedersen, C. A., Vadlamudi, S. V., Boccia, M. L., & Amico, J. A. (2006). Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes, Brain, and Behavior, 5, 274-281. https://doi.org/10.1111/j.1601-183X.2005.00162.x.
Pellissier, L. P., Gandia, J., Laboute, T., Becker, J. A. J., & Le Merrer, J. (2018). mu opioid receptor, social behaviour and autism spectrum disorder: Reward matters. British Journal of Pharmacology, 175, 2750-2769.
Pereira, M., & Morrell, J. I. (2009). The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: Facilitation followed by inhibition. Behavioural Brain Research, 205, 238-248. https://doi.org/10.1016/j.bbr.2009.06.026.
Pereira, M., & Morrell, J. I. (2010). The medial preoptic area is necessary for motivated choice of pup- over cocaine-associated environments by early postpartum rats. Neuroscience, 167, 216-231. https://doi.org/10.1016/j.neuroscience.2010.02.015.
Pereira, M., & Morrell, J. I. (2011). Functional mapping of the neural circuitry of rat maternal motivation: Effects of site-specific transient neural inactivation. Journal of Neuroendocrinology, 23, 1020-1035. https://doi.org/10.1111/j.1365-2826.2011.02200.x.
Pfaus, J. G., Kippin, T. E., & Coria-Avila, G. (2003). What can animal models tell us about human sexual response? Annual Review of Sex Research, 14, 1-63.
Pfaus, J. G., Kippin, T. E., Coria-Avila, G. A., Gelez, H., Afonso, V. M., Ismail, N., & Parada, M. (2012). Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Archives of Sexual Behavior, 41, 31-62. https://doi.org/10.1007/s10508-012-9935-5.
Porcelli, S., Van Der Wee, N., van der Werff, S., Aghajani, M., Glennon, J. C., van Heukelum, S., Mogavero, F., Lobo, A., Olivera, F. J., Lobo, E., Posadas, M., Dukart, J., Kozak, R., Arce, E., Ikram, A., Vorstman, J., Bilderbeck, A., Saris, I., Kas, M. J., & Serretti, A. (2019). Social brain, social dysfunction and social withdrawal. Neuroscience and Biobehavioral Reviews, 97, 10-33. https://doi.org/10.1016/j.neubiorev.2018.09.012.
Puglisi-Allegra, S., & Cabib, S. (1997). Psychopharmacology of dopamine: The contribution of comparative studies in inbred strains of mice. Progress in Neurobiology, 51, 637-661. https://doi.org/10.1016/S0301-0082(97)00008-7.
Qiao, H., Noda, Y., Kamei, H., Nagai, T., Furukawa, H., Miura, H., Kayukawa, Y., Ohta, T., & Nabeshima, T. (2001). Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. NeuroReport, 12, 11-15. https://doi.org/10.1097/00001756-200101220-00010.
Raam, T., McAvoy, K. M., Besnard, A., Veenema, A. H., & Sahay, A. (2017). Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nature Communications, 8, 2001. https://doi.org/10.1038/s41467-017-02173-0.
Rademacher, L., Schulte-Ruther, M., Hanewald, B., & Lammertz, S. (2017). Reward: From basic reinforcers to anticipation of social cues. Current Topics in Behavioral Neurosciences, 30, 207-221.
Rammou, A., Fisher, H. L., Johnson, S., Major, B., Rahaman, N., Chamberlain-Kent, N., & Stone, J. M. (2019). Negative symptoms in first-episode psychosis: Clinical correlates and 1-year follow-up outcomes in London Early Intervention Services. Early Intervention in Psychiatry, 13, 443-452. https://doi.org/10.1111/eip.12502.
Rapoport, J., Chavez, A., Greenstein, D., Addington, A., & Gogtay, N. (2009). Autism spectrum disorders and childhood-onset schizophrenia: Clinical and biological contributions to a relation revisited. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 10-18. https://doi.org/10.1097/CHI.0b013e31818b1c63.
Rapoport, J. L., & Gogtay, N. (2011). Childhood onset schizophrenia: Support for a progressive neurodevelopmental disorder. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 29, 251-258. https://doi.org/10.1016/j.ijdevneu.2010.10.003.
Reisbick, S., Rosenblatt, J. S., & Mayer, A. D. (1975). Decline of maternal behavior in the virgin and lactating rat. Journal of Comparative and Physiological Psychology, 89, 722-732. https://doi.org/10.1037/h0077059.
Rezayof, A., Zarrindast, M. R., Sahraei, H., & Haeri-Rohani, A. H. (2002). Involvement of dopamine D2 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Pharmacology, Biochemistry, and Behavior, 74, 187-197. https://doi.org/10.1016/S0091-3057(02)00989-9.
Riters, L. V. (2011). Pleasure seeking and birdsong. Neuroscience and Biobehavioral Reviews, 35, 1837-1845. https://doi.org/10.1016/j.neubiorev.2010.12.017.
Robinson, D. L., Heien, M. L., & Wightman, R. M. (2002). Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 10477-10486. https://doi.org/10.1523/JNEUROSCI.22-23-10477.2002.
Robinson, D. L., Zitzman, D. L., & Williams, S. K. (2011). Mesolimbic dopamine transients in motivated behaviors: Focus on maternal behavior. Frontiers in Psychiatry, 2, 23. https://doi.org/10.3389/fpsyt.2011.00023.
Sams-Dodd, F. (1995). Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behavioural Pharmacology, 6, 55-65. https://doi.org/10.1097/00008877-199501000-00009.
Sarnyai, Z., & Kovacs, G. L. (2014). Oxytocin in learning and addiction: From early discoveries to the present. Pharmacology, Biochemistry, and Behavior, 119, 3-9. https://doi.org/10.1016/j.pbb.2013.11.019.
Sato, T., Bottlender, R., Schroter, A., & Moller, H. J. (2004). Psychopathology of early-onset versus late-onset schizophrenia revisited: An observation of 473 neuroleptic-naive patients before and after first-admission treatments. Schizophrenia Research, 67, 175-183. https://doi.org/10.1016/S0920-9964(03)00015-X.
Scattoni, M. L., Crawley, J., & Ricceri, L. (2009). Ultrasonic vocalizations: A tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 33, 508-515. https://doi.org/10.1016/j.neubiorev.2008.08.003.
Schechter, M., Pinhasov, A., Weller, A., & Fride, E. (2012). Blocking the postpartum mouse dam's CB1 receptors impairs maternal behavior as well as offspring development and their adult social-emotional behavior. Behavioural Brain Research, 226, 481-492. https://doi.org/10.1016/j.bbr.2011.10.016.
Schenk, S., Britt, M. D., Atalay, J., & Charleson, S. (1982). Isolation rearing decreases opiate receptor binding in rat brain. Pharmacology, Biochemistry, and Behavior, 16, 841-842. https://doi.org/10.1016/0091-3057(82)90245-3.
Scheyer, A. F., Borsoi, M., Wager-Miller, J., Pelissier-Alicot, A. L., Murphy, M. N., Mackie, K., & Manzoni, O. J. J. (2020). Cannabinoid exposure via lactation in rats disrupts perinatal programming of the Gamma-aminobutyric acid trajectory and select early-life behaviors. Biological Psychiatry, 87, 666-677. https://doi.org/10.1016/j.biopsych.2019.08.023.
Schiavi, S., Iezzi, D., Manduca, A., Leone, S., Melancia, F., Carbone, C., Petrella, M., Mannaioni, G., Masi, A., & Trezza, V. (2019). Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to Valproic acid. Frontiers in Cellular Neuroscience, 13, 479. https://doi.org/10.3389/fncel.2019.00479.
Schwabe, K., Klein, S., & Koch, M. (2006). Behavioural effects of neonatal lesions of the medial prefrontal cortex and subchronic pubertal treatment with phencyclidine of adult rats. Behavioural Brain Research, 168, 150-160. https://doi.org/10.1016/j.bbr.2005.11.005.
Scott, K. M., Smith, D. R., & Ellis, P. M. (2010). Prospectively ascertained child maltreatment and its association with DSM-IV mental disorders in young adults. Archives of General Psychiatry, 67, 712-719. https://doi.org/10.1001/archgenpsychiatry.2010.71.
Seip, K. M., & Morrell, J. I. (2007). Increasing the incentive salience of cocaine challenges preference for pup- over cocaine-associated stimuli during early postpartum: Place preference and locomotor analyses in the lactating female rat. Psychopharmacology (Berl), 194, 309-319. https://doi.org/10.1007/s00213-007-0841-9.
Seip, K. M., & Morrell, J. I. (2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine-paired contexts. Behavioral Neuroscience, 123, 1325-1338. https://doi.org/10.1037/a0017666.
Seip, K. M., Pereira, M., Wansaw, M. P., Reiss, J. I., Dziopa, E. I., & Morrell, J. I. (2008). Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology (Berl), 199, 119-130. https://doi.org/10.1007/s00213-008-1140-9.
Servadio, M., Melancia, F., Manduca, A., di Masi, A., Schiavi, S., Cartocci, V., Pallottini, V., Campolongo, P., Ascenzi, P., & Trezza, V. (2016). Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Translational Psychiatry, 6, e902. https://doi.org/10.1038/tp.2016.182.
Servadio, M., Vanderschuren, L. J., & Trezza, V. (2015). Modeling autism-relevant behavioral phenotypes in rats and mice: Do 'autistic' rodents exist? Behavioural Pharmacology, 26, 522-540. https://doi.org/10.1097/FBP.0000000000000163.
Sieber, B., Frischknecht, H. R., & Waser, P. G. (1980). Behavioral effects of hashish in mice. I. Social interactions and nest-building behavior of males. Psychopharmacology (Berl), 70, 149-154. https://doi.org/10.1007/BF00435306.
Sithisarn, T., Legan, S. J., Westgate, P. M., Wilson, M., Wellmann, K., Bada, H. S., & Barron, S. (2017). The effects of perinatal oxycodone exposure on behavioral outcome in a rodent model. Frontiers in Pediatrics, 5, 180. https://doi.org/10.3389/fped.2017.00180.
Slamberova, R., Szilagyi, B., & Vathy, I. (2001). Repeated morphine administration during pregnancy attenuates maternal behavior. Psychoneuroendocrinology, 26, 565-576. https://doi.org/10.1016/S0306-4530(01)00012-9.
Smith, C. J. W., Wilkins, K. B., Li, S., Tulimieri, M. T., & Veenema, A. H. (2018). Nucleus accumbens mu opioid receptors regulate context-specific social preferences in the juvenile rat. Psychoneuroendocrinology, 89, 59-68. https://doi.org/10.1016/j.psyneuen.2017.12.017.
Smotherman, W. P., Bell, R. W., Starzec, J., Elias, J., & Zachman, T. A. (1974). Maternal responses to infant vocalizations and olfactory cues in rats and mice. Behavioral Biology, 12, 55-66. https://doi.org/10.1016/S0091-6773(74)91026-8.
Snigdha, S., & Neill, J. C. (2008). Improvement of phencyclidine-induced social behaviour deficits in rats: Involvement of 5-HT1A receptors. Behavioural Brain Research, 191, 26-31. https://doi.org/10.1016/j.bbr.2008.03.018.
Southwick, S. M., Bonanno, G. A., Masten, A. S., Panter-Brick, C., & Yehuda, R. (2014). Resilience definitions, theory, and challenges: Interdisciplinary perspectives. European Journal of Psychotraumatology, 5(1), 25338.
Spano, M. S., Fadda, P., Frau, R., Fattore, L., & Fratta, W. (2010). Cannabinoid self-administration attenuates PCP-induced schizophrenia-like symptoms in adult rats. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 20, 25-36. https://doi.org/10.1016/j.euroneuro.2009.09.004.
Stafisso-Sandoz, G., Polley, D., Holt, E., Lambert, K. G., & Kinsley, C. H. (1998). Opiate disruption of maternal behavior: Morphine reduces, and naloxone restores, c-fos activity in the medial preoptic area of lactating rats. Brain Research Bulletin, 45, 307-313. https://doi.org/10.1016/S0361-9230(97)00375-4.
Stern, J. M., & Mackinnon, D. A. (1976). Postpartum, hormonal, and nonhormonal induction of maternal behavior in rats: Effects on T-maze retrieval of pups. Hormones and Behavior, 7, 305-316. https://doi.org/10.1016/0018-506X(76)90036-2.
Stern, J. M., & Mackinnon, D. A. (1978). Sensory regulation of maternal behavior in rats: Effects of pup age. Developmental Psychobiology, 11, 579-586. https://doi.org/10.1002/dev.420110607.
Stevenson, S. A., Piepenburg, A., Spool, J. A., Angyal, C. S., Hahn, A. H., Zhao, C., & Riters, L. V. (2020). Endogenous opioids facilitate intrinsically-rewarded birdsong. Scientific Reports, 10, 11083. https://doi.org/10.1038/s41598-020-67684-1.
Strathearn, L. (2011). Maternal neglect: Oxytocin, dopamine and the neurobiology of attachment. Journal of Neuroendocrinology, 23, 1054-1065. https://doi.org/10.1111/j.1365-2826.2011.02228.x.
Sukikara, M. H., Platero, M. D., Canteras, N. S., & Felicio, L. F. (2007). Opiate regulation of behavioral selection during lactation. Pharmacology, Biochemistry, and Behavior, 87, 315-320. https://doi.org/10.1016/j.pbb.2007.05.005.
Sztainert, T., Wohl, M. J., McManus, J. F., & Stead, J. D. (2014). On being attracted to the possibility of a win: Reward sensitivity (via gambling motives) undermines treatment seeking among pathological gamblers. Journal of Gambling Studies, 30, 901-911. https://doi.org/10.1007/s10899-013-9394-5.
Takayanagi, Y., Yoshida, M., Bielsky, I. F., Ross, H. E., Kawamata, M., Onaka, T., Yanagisawa, T., Kimura, T., Matzuk, M. M., Young, L. J., & Nishimori, K. (2005). Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 16096-16101. https://doi.org/10.1073/pnas.0505312102.
Takizawa, R., Maughan, B., & Arseneault, L. (2014). Adult health outcomes of childhood bullying victimization: Evidence from a five-decade longitudinal British birth cohort. The American Journal of Psychiatry, 171, 777-784. https://doi.org/10.1176/appi.ajp.2014.13101401.
Tanaka, K., Suzuki, M., Sumiyoshi, T., Murata, M., Tsunoda, M., & Kurachi, M. (2003). Subchronic phencyclidine administration alters central vasopressin receptor binding and social interaction in the rat. Brain Research, 992, 239-245. https://doi.org/10.1016/j.brainres.2003.08.050.
Tartaglione, A. M., Schiavi, S., Calamandrei, G., & Trezza, V. (2019). Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology, 159, 107477.-https://doi.org/10.1016/j.neuropharm.2018.12.024.
Thewissen, R., Snijders, S. J., Havermans, R. C., van den Hout, M., & Jansen, A. (2006). Renewal of cue-elicited urge to smoke: Implications for cue exposure treatment. Behaviour Research and Therapy, 44, 1441-1449. https://doi.org/10.1016/j.brat.2005.10.010.
Thiel, K. J., Okun, A. C., & Neisewander, J. L. (2008). Social reward-conditioned place preference: A model revealing an interaction between cocaine and social context rewards in rats. Drug and Alcohol Dependence, 96, 202-212. https://doi.org/10.1016/j.drugalcdep.2008.02.013.
Thiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology (Berl), 204, 391-402. https://doi.org/10.1007/s00213-009-1470-2.
Thompson, M. R., Callaghan, P. D., Hunt, G. E., Cornish, J. L., & McGregor, I. S. (2007). A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine ("ecstasy"). Neuroscience, 146, 509-514. https://doi.org/10.1016/j.neuroscience.2007.02.032.
Tomas-Roig, J., Piscitelli, F., Gil, V., del Río, J. A., Moore, T. P., Agbemenyah, H., Salinas-Riester, G., Pommerenke, C., Lorenzen, S., Beißbarth, T., Hoyer-Fender, S., Di Marzo, V., & Havemann-Reinecke, U. (2016). Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice. Behavioural Brain Research, 303, 34-43. https://doi.org/10.1016/j.bbr.2016.01.036.
Tortoriello, G., Morris, C. V., Alpar, A., Fuzik, J., Shirran, S. L., Calvigioni, D., Keimpema, E., Botting, C. H., Reinecke, K., Herdegen, T., Courtney, M., Hurd, Y. L., & Harkany, T. (2014). Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. The EMBO Journal, 33, 668-685.
Trezza, V., Campolongo, P., Cassano, T., Macheda, T., Dipasquale, P., Carratu, M. R., Gaetani, S., & Cuomo, V. (2008). Effects of perinatal exposure to delta-9-tetrahydrocannabinol on the emotional reactivity of the offspring: A longitudinal behavioral study in Wistar rats. Psychopharmacology (Berl), 198, 529-537. https://doi.org/10.1007/s00213-008-1162-3.
Trezza, V., Campolongo, P., & Vanderschuren, L. J. (2011). Evaluating the rewarding nature of social interactions in laboratory animals. Developmental Cognitive Neuroscience, 1, 444-458. https://doi.org/10.1016/j.dcn.2011.05.007.
Trezza, V., Damsteegt, R., Achterberg, E. J., & Vanderschuren, L. J. (2011). Nucleus accumbens mu-opioid receptors mediate social reward. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 6362-6370.
Trezza, V., Damsteegt, R., & Vanderschuren, L. J. (2009). Conditioned place preference induced by social play behavior: Parametrics, extinction, reinstatement and disruption by methylphenidate. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 19, 659-669. https://doi.org/10.1016/j.euroneuro.2009.03.006.
Tzschentke, T. M. (1998). Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Progress in Neurobiology, 56, 613-672. https://doi.org/10.1016/S0301-0082(98)00060-4.
Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12, 227-462. https://doi.org/10.1111/j.1369-1600.2007.00070.x.
Van den Berg, C. L., Pijlman, F. T., Koning, H. A., Diergaarde, L., Van Ree, J. M., & Spruijt, B. M. (1999). Isolation changes the incentive value of sucrose and social behaviour in juvenile and adult rats. Behavioural Brain Research, 106, 133-142. https://doi.org/10.1016/S0166-4328(99)00099-6.
Van den Berg, C. L., Van Ree, J. M., Spruijt, B. M., & Kitchen, I. (1999). Effects of juvenile isolation and morphine treatment on social interactions and opioid receptors in adult rats: Behavioural and autoradiographic studies. The European Journal of Neuroscience, 11, 3023-3032. https://doi.org/10.1046/j.1460-9568.1999.00717.x.
van Leengoed, E., Kerker, E., & Swanson, H. H. (1987). Inhibition of post-partum maternal behaviour in the rat by injecting an oxytocin antagonist into the cerebral ventricles. The Journal of Endocrinology, 112, 275-282. https://doi.org/10.1677/joe.0.1120275.
Vanderschuren, L. J., Achterberg, E. J., & Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience and Biobehavioral Reviews, 70, 86-105. https://doi.org/10.1016/j.neubiorev.2016.07.025.
Vanderschuren, L. J., Niesink, R. J., Spruijt, B. M., & Van Ree, J. M. (1995). Influence of environmental factors on social play behavior of juvenile rats. Physiology & Behavior, 58, 119-123. https://doi.org/10.1016/0031-9384(94)00385-I.
Vanderschuren, L. J., Stein, E. A., Wiegant, V. M., & Van Ree, J. M. (1995). Social isolation and social interaction alter regional brain opioid receptor binding in rats. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 5, 119-127. https://doi.org/10.1016/0924-977X(95)00010-M.
Vanderschuren, L. J., Trezza, V., Griffioen-Roose, S., Schiepers, O. J., Van Leeuwen, N., De Vries, T. J., & Schoffelmeer, A. N. (2008). Methylphenidate disrupts social play behavior in adolescent rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 33, 2946-2956. https://doi.org/10.1038/npp.2008.10.
Vassoler, F. M., Oranges, M. L., Toorie, A. M., & Byrnes, E. M. (2018). Oxycodone self-administration during pregnancy disrupts the maternal-infant dyad and decreases midbrain OPRM1 expression during early postnatal development in rats. Pharmacology, Biochemistry, and Behavior, 173, 74-83. https://doi.org/10.1016/j.pbb.2018.07.009.
Venniro, M., Russell, T. I., Zhang, M., & Shaham, Y. (2019). Operant social reward decreases incubation of heroin craving in male and female rats. Biological Psychiatry, 86, 848-856. https://doi.org/10.1016/j.biopsych.2019.05.018.
Vidal-Infer, A., Roger-Sanchez, C., Daza-Losada, M., Aguilar, M. A., Minarro, J., & Rodriguez-Arias, M. (2012). Role of the dopaminergic system in the acquisition, expression and reinstatement of MDMA-induced conditioned place preference in adolescent mice. PLoS One, 7, e43107.-https://doi.org/10.1371/journal.pone.0043107.
Volkow, N. D., & Morales, M. (2015). The brain on drugs: From reward to addiction. Cell, 162, 712-725. https://doi.org/10.1016/j.cell.2015.07.046.
von Ehrenstein, O. S., Ling, C., Cui, X., Cockburn, M., Park, A. S., Yu, F., Wu, J., & Ritz, B. (2019). Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ, 364, l962. https://doi.org/10.1136/bmj.l962.
Walloch, R. A., & Taylor-Spikes, M. (1976). Auditory thresholds in the guinea pig: A preliminary report of a behavioral technique employing a food reward. The Laryngoscope, 86, 1699-1705. https://doi.org/10.1288/00005537-197611000-00012.
Wang, D., Noda, Y., Zhou, Y., Nitta, A., Furukawa, H., & Nabeshima, T. (2007). Synergistic effect of galantamine with risperidone on impairment of social interaction in phencyclidine-treated mice as a schizophrenic animal model. Neuropharmacology, 52, 1179-1187. https://doi.org/10.1016/j.neuropharm.2006.12.007.
Wang, J., Liu, C., & Ma, Y. (2017). Parents induced- conditioned place preference and the neuronal expression of oxytocin and tyrosine hydroxylase in preweanling female pups. Behavioural Brain Research, 317, 528-535. https://doi.org/10.1016/j.bbr.2016.10.021.
Wansaw, M. P., Pereira, M., & Morrell, J. I. (2008). Characterization of maternal motivation in the lactating rat: Contrasts between early and late postpartum responses. Hormones and Behavior, 54, 294-301. https://doi.org/10.1016/j.yhbeh.2008.03.005.
Wei, D., Allsop, S., Tye, K., & Piomelli, D. (2017). Endocannabinoid signaling in the control of social behavior. Trends in Neurosciences, 40, 385-396. https://doi.org/10.1016/j.tins.2017.04.005.
Wei, D., Dinh, D., Lee, D., Li, D., Anguren, A., Moreno-Sanz, G., Gall, C. M., & Piomelli, D. (2016). Enhancement of anandamide-mediated endocannabinoid signaling corrects autism-related social impairment. Cannabis and Cannabinoid Research, 1, 81-89. https://doi.org/10.1089/can.2015.0008.
Wei, D., Lee, D., Cox, C. D., Karsten, C. A., Penagarikano, O., Geschwind, D. H., Gall, C. M., & Piomelli, D. (2015). Endocannabinoid signaling mediates oxytocin-driven social reward. Proceedings of the National Academy of Sciences of the United States of America, 112, 14084-14089. https://doi.org/10.1073/pnas.1509795112.
Wei, D., Lee, D., Li, D., Daglian, J., Jung, K. M., & Piomelli, D. (2016). A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology (Berl), 233, 1911-1919. https://doi.org/10.1007/s00213-016-4222-0.
Wenk, G. L. (2001) Assessment of spatial memory using the T maze. Current protocols in neuroscience Chapter 8. Unit 8 5B.
Wills, G. D., Wesley, A. L., Moore, F. R., & Sisemore, D. A. (1983). Social interactions among rodent conspecifics: A review of experimental paradigms. Neuroscience and Biobehavioral Reviews, 7, 315-323. https://doi.org/10.1016/0149-7634(83)90035-0.
Wilson, C. A., & Koenig, J. I. (2014). Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 24, 759-773. https://doi.org/10.1016/j.euroneuro.2013.11.008.
Wilsoncroft, W. E. (1968). Babies by bar-press: Maternal behavior in the rat. Behavior Research Methods and Instrumentation, 1, 229-230.
Winship, I. R., Dursun, S. M., Baker, G. B., Balista, P. A., Kandratavicius, L., Maia-de-Oliveira, J. P., Hallak, J., & Howland, J. G. (2019). An overview of animal models related to schizophrenia. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 64, 5-17.
Winslow, J. T., Hearn, E. F., Ferguson, J., Young, L. J., Matzuk, M. M., & Insel, T. R. (2000). Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Hormones and Behavior, 37, 145-155. https://doi.org/10.1006/hbeh.1999.1566.
Winslow, J. T., & Insel, T. R. (1991). Endogenous opioids: Do they modulate the rat pup's response to social isolation? Behavioral Neuroscience, 105, 253-263. https://doi.org/10.1037/0735-7044.105.2.253.
Winslow, J. T., & Insel, T. R. (2002). The social deficits of the oxytocin knockout mouse. Neuropeptides, 36, 221-229. https://doi.org/10.1054/npep.2002.0909.
Wise, R. A., & Koob, G. F. (2014). The development and maintenance of drug addiction. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 39, 254-262. https://doi.org/10.1038/npp.2013.261.
Wohr, M., Moles, A., Schwarting, R. K., & D'Amato, F. R. (2011). Lack of social exploratory activation in male mu-opioid receptor KO mice in response to playback of female ultrasonic vocalizations. Social Neuroscience, 6, 76-87.
Wu, H. F., Lu, T. Y., Chu, M. C., Chen, P. S., Lee, C. W., & Lin, H. C. (2020). Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology, 162, 107736.-https://doi.org/10.1016/j.neuropharm.2019.107736.
Yee, N., Schwarting, R. K., Fuchs, E., & Wohr, M. (2012). Increased affective ultrasonic communication during fear learning in adult male rats exposed to maternal immune activation. Journal of Psychiatric Research, 46, 1199-1205. https://doi.org/10.1016/j.jpsychires.2012.05.010.
Young, L. J., Murphy Young, A. Z., & Hammock, E. A. (2005). Anatomy and neurochemistry of the pair bond. The Journal of Comparative Neurology, 493, 51-57. https://doi.org/10.1002/cne.20771.
Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7, 1048-1054. https://doi.org/10.1038/nn1327.
Zaias, J., Okimoto, L., Trivedi, A., Mann, P. E., & Bridges, R. S. (1996). Inhibitory effects of naltrexone on the induction of parental behavior in juvenile rats. Pharmacology, Biochemistry, and Behavior, 53, 987-993. https://doi.org/10.1016/0091-3057(95)02138-8.
Zhao, C., Chang, L., Auger, A. P., Gammie, S. C., & Riters, L. V. (2020). Mu opioid receptors in the medial preoptic area govern social play behavior in adolescent male rats. Genes, Brain, and Behavior, 19, e12662.
Zhao, C., & Li, M. (2009). Sedation and disruption of maternal motivation underlie the disruptive effects of antipsychotic treatment on rat maternal behavior. Pharmacology, Biochemistry, and Behavior, 92, 147-156. https://doi.org/10.1016/j.pbb.2008.11.006.
Zhao, C., & Li, M. (2010). c-Fos identification of neuroanatomical sites associated with haloperidol and clozapine disruption of maternal behavior in the rat. Neuroscience, 166, 1043-1055. https://doi.org/10.1016/j.neuroscience.2010.01.023.