Enantioselective Formation of Quaternary Centers by Allylic Alkylation with First-Row Transition-Metal Catalysts.


Journal

Chemical reviews
ISSN: 1520-6890
Titre abrégé: Chem Rev
Pays: United States
ID NLM: 2985134R

Informations de publication

Date de publication:
14 04 2021
Historique:
pubmed: 12 2 2021
medline: 28 9 2021
entrez: 11 2 2021
Statut: ppublish

Résumé

Asymmetric allylic alkylation mediated by transition metals provides an efficient strategy to form quaternary stereogenic centers. While this transformation is dominated by the use of second- and third-row transition metals (e.g., Pd, Rh, and Ir), recent developments have revealed the potential of first-row transition metals, which provide not only a less expensive and potentially equally efficient alternative but also new mechanistic possibilities. This review summarizes examples for the assembly of quaternary stereocenters using prochiral allylic substrates and hard, achiral nucleophiles in the presence of copper complexes and highlights the complementary approaches with soft, prochiral nucleophiles catalyzed by chiral cobalt and nickel complexes.

Identifiants

pubmed: 33570909
doi: 10.1021/acs.chemrev.0c01115
pmc: PMC8846597
mid: NIHMS1746780
doi:

Substances chimiques

Allyl Compounds 0
Coordination Complexes 0
Ligands 0
Solvents 0
Transition Elements 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

4084-4099

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM080269
Pays : United States

Références

Chem Commun (Camb). 2007 May 7;(17):1683-91
pubmed: 17457409
Angew Chem Int Ed Engl. 2016 Apr 4;55(15):4798-802
pubmed: 26969898
Angew Chem Int Ed Engl. 2008;47(47):9122-4
pubmed: 18925597
Org Lett. 2019 Mar 1;21(5):1278-1282
pubmed: 30768277
Chemistry. 2010 Aug 23;16(32):9890-904
pubmed: 20540048
Nat Prod Rep. 2020 Feb 26;37(2):276-292
pubmed: 31515549
J Org Chem. 2008 Mar 7;73(5):1983-6
pubmed: 18266387
J Am Chem Soc. 2019 Oct 30;141(43):17305-17313
pubmed: 31613609
J Am Chem Soc. 2004 Sep 15;126(36):11130-1
pubmed: 15355076
Chemistry. 2015 Oct 5;21(41):14571-8
pubmed: 26307334
Nature. 2014 Dec 11;516(7530):181-91
pubmed: 25503231
J Am Chem Soc. 2011 Apr 6;133(13):4778-81
pubmed: 21384918
Org Lett. 2005 Mar 31;7(7):1255-8
pubmed: 15787480
J Am Chem Soc. 2004 May 26;126(20):6287-93
pubmed: 15149226
Angew Chem Int Ed Engl. 2007;46(20):3701-5
pubmed: 17407117
J Am Chem Soc. 2009 Aug 19;131(32):11625-33
pubmed: 19630406
Chem Rev. 2003 Aug;103(8):2921-44
pubmed: 12914486
Acc Chem Res. 2015 Mar 17;48(3):740-51
pubmed: 25715056
J Am Chem Soc. 2006 Jul 5;128(26):8416-7
pubmed: 16802804
Chem Commun (Camb). 2011 Apr 28;47(16):4593-623
pubmed: 21359322
J Org Chem. 2018 Oct 5;83(19):11463-11479
pubmed: 30183287
Chemistry. 2015 Mar 9;21(11):4209-12
pubmed: 25631942
Nature. 2008 Jun 26;453(7199):1228-31
pubmed: 18580947
Chem Rev. 2019 Feb 13;119(3):1855-1969
pubmed: 30582688
Org Lett. 2020 May 1;22(9):3519-3523
pubmed: 32301619
Chem Rev. 2017 Oct 11;117(19):12564-12580
pubmed: 28910092
Chemistry. 2015 Jan 12;21(3):993-7
pubmed: 25421857
J Org Chem. 2014 Mar 21;79(6):2354-67
pubmed: 24601661
Chem Sci. 2018 Jan 24;9(9):2547-2551
pubmed: 29732133
Angew Chem Int Ed Engl. 2019 Jul 1;58(27):9199-9203
pubmed: 30998841
J Am Chem Soc. 2015 May 20;137(19):6156-9
pubmed: 25941763
Chemistry. 2013 Jan 21;19(4):1199-203
pubmed: 23255196
Angew Chem Int Ed Engl. 2014 May 5;53(19):4954-8
pubmed: 24668885
J Org Chem. 2017 Feb 17;82(4):1880-1887
pubmed: 28098461
J Am Chem Soc. 2005 Jan 12;127(1):62-3
pubmed: 15631449
Chem Rev. 2003 Aug;103(8):2763-94
pubmed: 12914480
Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1664-8
pubmed: 24458538
Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1922-5
pubmed: 22262571
J Am Chem Soc. 2010 Oct 13;132(40):14315-20
pubmed: 20860365
Angew Chem Int Ed Engl. 2001 Apr 17;40(8):1456-1460
pubmed: 29712348
Angew Chem Int Ed Engl. 2007;46(15):2619-22
pubmed: 17348048
Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7460-7464
pubmed: 28466531
J Am Chem Soc. 2015 Jul 22;137(28):8948-64
pubmed: 26172476
Angew Chem Int Ed Engl. 2016 Jan 18;55(3):1098-101
pubmed: 26637131
Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8370-4
pubmed: 20886589
Chem Rev. 2012 Apr 11;112(4):2339-72
pubmed: 22111574
Angew Chem Int Ed Engl. 2007;46(24):4554-8
pubmed: 17487917
Chemistry. 2008;14(34):10615-27
pubmed: 18924190
J Am Chem Soc. 2006 Dec 13;128(49):15604-5
pubmed: 17147366
Org Biomol Chem. 2020 Oct 14;18(39):7740-7750
pubmed: 32940308
Chemistry. 2013 Apr 22;19(17):5432-41
pubmed: 23447457
J Am Chem Soc. 2012 Feb 15;134(6):2946-9
pubmed: 22280225
ChemistryOpen. 2020 Sep 10;9(9):929-952
pubmed: 32953384
J Am Chem Soc. 2004 Sep 1;126(34):10676-81
pubmed: 15327326
Chem Rev. 2008 Aug;108(8):2928-51
pubmed: 18698734
J Am Chem Soc. 2005 May 11;127(18):6877-82
pubmed: 15869311
Angew Chem Int Ed Engl. 2016 Apr 4;55(15):4777-80
pubmed: 26961751
Chem Rev. 2017 Mar 8;117(5):4528-4561
pubmed: 28164696
J Am Chem Soc. 2014 Oct 1;136(39):13932-9
pubmed: 25215542
ACS Catal. 2016 Sep 2;6(9):6207-6213
pubmed: 28649462
Angew Chem Int Ed Engl. 2011 Sep 5;50(37):8656-9
pubmed: 21793143

Auteurs

Lars Süsse (L)

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Brian M Stoltz (BM)

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Articles similaires

Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Classifications MeSH