Targeting the membrane-proximal C2-set domain of CD33 for improved CD33-directed immunotherapy.
Antibodies, Monoclonal, Humanized
/ biosynthesis
Antineoplastic Agents, Immunological
/ chemistry
Gemtuzumab
/ chemistry
Humans
Immunoconjugates
/ chemistry
Immunotherapy
/ methods
Leukemia, Myeloid, Acute
/ immunology
Sialic Acid Binding Ig-like Lectin 3
/ antagonists & inhibitors
Tumor Cells, Cultured
Journal
Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
11
05
2020
accepted:
26
01
2021
revised:
11
01
2021
pubmed:
17
2
2021
medline:
6
10
2021
entrez:
16
2
2021
Statut:
ppublish
Résumé
There is increasing interest in targeting CD33 in malignant and non-malignant disorders. In acute myeloid leukemia, longer survival with the CD33 antibody-drug conjugate gemtuzumab ozogamicin (GO) validates this strategy. Still, GO benefits only some patients, prompting efforts to develop more potent CD33-directed therapeutics. As one limitation, CD33 antibodies typically recognize the membrane-distal V-set domain. Using various artificial CD33 proteins, in which this domain was differentially positioned within the extracellular portion of the molecule, we tested whether targeting membrane-proximal epitopes enhances the effector functions of CD33 antibody-based therapeutics. Consistent with this idea, a CD33
Identifiants
pubmed: 33589747
doi: 10.1038/s41375-021-01160-1
pii: 10.1038/s41375-021-01160-1
pmc: PMC8364569
mid: NIHMS1666863
doi:
Substances chimiques
Antibodies, Monoclonal, Humanized
0
Antineoplastic Agents, Immunological
0
CD33 protein, human
0
Immunoconjugates
0
Sialic Acid Binding Ig-like Lectin 3
0
Gemtuzumab
93NS566KF7
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2496-2507Subventions
Organisme : NCI NIH HHS
ID : R21 CA223409
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007093
Pays : United States
Organisme : NCI NIH HHS
ID : K12 CA076930
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA015704
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA100632
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA234203
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA245594
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature.
Références
Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119:6198–208.
doi: 10.1182/blood-2011-11-325050
Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease. Annu Rev Immunol. 2020;38:365–95.
doi: 10.1146/annurev-immunol-102419-035900
Grossbard ML, Press OW, Appelbaum FR, Bernstein ID, Nadler LM. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood. 1992;80:863–78.
doi: 10.1182/blood.V80.4.863.863
Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28:143–53.
doi: 10.1016/j.blre.2014.04.001
Walter RB. Expanding use of CD33-directed immunotherapy. Expert Opin Biol Ther. 2020;20:955–8.
doi: 10.1080/14712598.2020.1788540
Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31:1855–68.
doi: 10.1038/leu.2017.187
Walter RB. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin Investig Drugs. 2018;27:339–48.
doi: 10.1080/13543784.2018.1452911
Bluemel C, Hausmann S, Fluhr P, Sriskandarajah M, Stallcup WB, Baeuerle PA, et al. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol Immunother. 2010;59:1197–209.
doi: 10.1007/s00262-010-0844-y
Lin TS. Ofatumumab: a novel monoclonal anti-CD20 antibody. Pharmgenomics Pers Med. 2010;3:51–59.
pubmed: 23226042
pmcid: 3513208
Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121:1165–74.
doi: 10.1182/blood-2012-06-438002
Cleary KLS, Chan HTC, James S, Glennie MJ, Cragg MS. Antibody distance from the cell membrane regulates antibody effector mechanisms. J Immunol. 2017;198:3999–4011.
doi: 10.4049/jimmunol.1601473
Walter RB, Raden BW, Kamikura DM, Cooper JA, Bernstein ID. Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood. 2005;105:1295–302.
doi: 10.1182/blood-2004-07-2784
Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61.
doi: 10.1182/blood-2013-09-527044
Laszlo GS, Harrington KH, Gudgeon CJ, Beddoe ME, Fitzgibbon MP, Ries RE, et al. Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia. Oncotarget. 2016;7:43281–94.
doi: 10.18632/oncotarget.9674
Godwin CD, Laszlo GS, Wood BL, Correnti CE, Bates OM, Garling EE, et al. The CD33 splice isoform lacking exon 2 as therapeutic target in human acute myeloid leukemia. Leukemia. 2020;34:2479–83.
doi: 10.1038/s41375-020-0755-7
Laszlo GS, Gudgeon CJ, Harrington KH, Walter RB. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015;5:e340.
doi: 10.1038/bcj.2015.68
Harrington KH, Gudgeon CJ, Laszlo GS, Newhall KJ, Sinclair AM, Frankel SR, et al. The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk. PLoS ONE. 2015;10:e0135945.
doi: 10.1371/journal.pone.0135945
Humbert O, Laszlo GS, Sichel S, Ironside C, Haworth KG, Bates OM, et al. Engineering resistance to CD33-targeted immunotherapy in normal hematopoiesis by CRISPR/Cas9-deletion of CD33 exon 2. Leukemia. 2019;33:762–808.
doi: 10.1038/s41375-018-0277-8
Bandaranayake AD, Correnti C, Ryu BY, Brault M, Strong RK, Rawlings DJ. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors. Nucleic Acids Res. 2011;39:e143.
doi: 10.1093/nar/gkr706
Godwin CD, Bates OM, Garling EE, Beddoe ME, Laszlo GS, Walter RB. The Bruton’s tyrosine kinase inhibitor ibrutinib abrogates bispecific antibody-mediated T-cell cytotoxicity. Br J Haematol. 2020;189:e9–e13.
doi: 10.1111/bjh.16406
Orcutt KD, Ackerman ME, Cieslewicz M, Quiroz E, Slusarczyk AL, Frangioni JV, et al. A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel. 2010;23:221–8.
doi: 10.1093/protein/gzp077
Laszlo GS, Beddoe ME, Godwin CD, Bates OM, Gudgeon CJ, Harrington KH, et al. Relationship between CD33 expression, splicing polymorphism, and in vitro cytotoxicity of gemtuzumab ozogamicin and the CD33/CD3 BiTE(R) AMG 330. Haematologica. 2019;104:e59–e62.
doi: 10.3324/haematol.2018.202069
Walter RB, Raden BW, Zeng R, Häusermann P, Bernstein ID, Cooper JA. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J Leukoc Biol. 2008;83:200–11.
doi: 10.1189/jlb.0607388
Walter RB, Häusermann P, Raden BW, Teckchandani AM, Kamikura DM, Bernstein ID, et al. Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor. Traffic. 2008;9:267–79.
doi: 10.1111/j.1600-0854.2007.00682.x
Reusch U, Harrington KH, Gudgeon CJ, Fucek I, Ellwanger K, Weichel M, et al. Characterization of CD33/CD3 tetravalent bispecific tandem diabodies (TandAbs) for the treatment of acute myeloid leukemia. Clin Cancer Res. 2016;22:5829–38.
doi: 10.1158/1078-0432.CCR-16-0350
Correnti CE, Laszlo GS, de van der Schueren WJ, Godwin CD, Bandaranayake A, Busch MA, et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia. 2018;32:1239–43.
doi: 10.1038/s41375-018-0014-3
Klupsch K, Baeriswyl V, Scholz R, Dannenberg J, Santimaria R, Senn D, et al. COVA4231, a potent CD3/CD33 bispecific FynomAb with IgG-like pharmacokinetics for the treatment of acute myeloid leukemia. Leukemia. 2019;33:805–8.
doi: 10.1038/s41375-018-0249-z
Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8:355ra116.
doi: 10.1126/scitranslmed.aaf8621
Nair-Gupta P, Diem M, Reeves D, Wang W, Schulingkamp R, Sproesser K, et al. A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia. Blood Adv. 2020;4:906–19.
doi: 10.1182/bloodadvances.2019001188