Role of confirmed and potential predictors of an unfavorable outcome in heart failure in everyday clinical practice.
Biomarker(s)
Heart failure
Prognosis
Risk factor(s)
Risk models
Risk prediction
Journal
Irish journal of medical science
ISSN: 1863-4362
Titre abrégé: Ir J Med Sci
Pays: Ireland
ID NLM: 7806864
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
13
10
2020
accepted:
14
12
2020
pubmed:
18
2
2021
medline:
28
1
2022
entrez:
17
2
2021
Statut:
ppublish
Résumé
Heart failure (HF) is the only cardiovascular disease with an ever increasing incidence. HF, through reduced functional capacity, frequent exacerbations of disease, and repeated hospitalizations, results in poorer quality of life, decreased work productivity, and significantly increased costs of the public health system. The main challenge in the treatment of HF is the availability of reliable prognostic models that would allow patients and doctors to develop realistic expectations about the prognosis and to choose the appropriate therapy and monitoring method. At this moment, there is a lack of universal parameters or scales on the basis of which we could easily capture the moment of deterioration of HF patients' condition. Hence, it is crucial to identify such factors which at the same time will be widely available, cheap, and easy to use. We can find many studies showing different predictors of unfavorable outcome in HF patients: thorough assessment with echocardiography imaging, exercise testing (e.g., 6-min walk test, cardiopulmonary exercise testing), and biomarkers (e.g., N-terminal pro-brain type natriuretic peptide, high-sensitivity troponin T, galectin-3, high-sensitivity C-reactive protein). Some of them are very promising, but more research is needed to create a specific panel on the basis of which we will be able to assess HF patients. At this moment despite identification of many markers of adverse outcomes, clinical decision-making in HF is still predominantly based on a few basic parameters, such as the presence of HF symptoms (NYHA class), left ventricular ejection fraction, and QRS complex duration and morphology.
Identifiants
pubmed: 33595788
doi: 10.1007/s11845-020-02477-z
pii: 10.1007/s11845-020-02477-z
pmc: PMC8789698
doi:
Substances chimiques
Biomarkers
0
Natriuretic Peptide, Brain
114471-18-0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
213-227Informations de copyright
© 2021. The Author(s).
Références
Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7–11. https://doi.org/10.15420/cfr.2016:25:2
doi: 10.15420/cfr.2016:25:2
pubmed: 28785469
pmcid: 5494150
Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139:e56–e528. https://doi.org/10.1161/CIR.0000000000000659
doi: 10.1161/CIR.0000000000000659
pubmed: 30700139
Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146. https://doi.org/10.1136/hrt.2003.025270
doi: 10.1136/hrt.2003.025270
pubmed: 17699180
pmcid: 1955040
Ambrosy AP, Fonarow GC, Butler J et al (2014) The global health and economic burden of hospitalizations for heart failure. J Am Coll Cardiol 63(12):1123–1133
pubmed: 24491689
Heidenreich PA, Albert NM, Allen LA et al (2013) Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 6(3):606–619. https://doi.org/10.1161/HHF.0b013e318291329a
doi: 10.1161/HHF.0b013e318291329a
pubmed: 23616602
pmcid: 3908895
Lloyd-Jones DM, Larson MG, Leip EP et al (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106:3068–3072
pubmed: 12473553
Harper S (2014) Economic and social implications of aging societies. Science 346(6209):587–591
pubmed: 25359967
Ponikowski P, Voors A, Anker S et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J 33:1787–1847. https://doi.org/10.1093/eurheartj/ehw128
doi: 10.1093/eurheartj/ehw128
OECD 2015 Avoidable hospital admissions in health at a glance 2015: OECD indicators. OECD Publishing. Paris. https://doi.org/10.1787/health_glance-2015-en .
Karasek D, Kubica A, Sinkiewicz W, Błażejewski J, Bujak R (2008) Epidemia niewydolności serca – problem zdrowotny i społeczny starzejących się społeczeństw Polski i Europy. Folia Cardiologica Excerpta 3, 5:243, 245-246.
Rywik TM, Kolodziej P, Targonski R et al (2011) Characteristics of the heart failure population in Poland: ZOPAN, a multicentre national programme. Kardiol Pol 69(1):24–31
pubmed: 21267960
Rywik TM, Zielinski T, Piotrowski W et al (2008) Heart failure patients from hospital settings in Poland: population characteristics and treatment patterns, a multicenter retrospective study. Cardiol J 15(2):169–180
pubmed: 18651402
Balsam P, Tyminska A, Kaplon-Cieslicka A, et al. (2015) Predictors of one-year outcome in patients hospitalized for heart failure: results from the Polish part of the Heart Failure Pilot Survey of the European Society of Cardiology. Kardiologia polska
mapowanie Embaedp. [Mapping health needs in cardiology for Poland] Mapa potrzeb zdrowotnych w zakresie kardiologii dla Polski. Secondary [Mapping health needs in cardiology for Poland] Mapa potrzeb zdrowotnych w zakresie kardiologii dla Polski 2019. http://mpz.mz.gov.pl/wp-content/uploads/2019/06/MPZ_kardiologia_Polska.pdf
United Nations, Department of Economic and Social Affairs, Population Division (2019) World population prospects 2019: highlights. ST/ESA/SER.A/423
Ambrosy AP, Fonarow GC, Butler J et al (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63(12):1123–1133. https://doi.org/10.1016/j.jacc.2013.11.053 indexed in PubMed: 24491689
Kapłon-Cieślicka A, Drożdż J, Filipiak KJ (2017) Prognostic factors in heart failure — are they all equally important? Kardiol Pol 75(6):519–526
pubmed: 28553872
Hollenberg S, Stevenson L, Vaibhav TJ et al (2019) 2019 ACC expert consensus decision pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure. J Am Coll Cardiol 74(15):1966–2011
pubmed: 31526538
Frazier CG, Alexander KP, Newby LK, Anderson S, Iverson E, Packer M, Cohn J, Goldstein S, Douglas PS (2007) Associations of gender and etiology with outcomes in heart failure with systolic dysfunction: a pooled analysis of 5 randomized control trials. J Am Coll Cardiol 49:1450–1458
pubmed: 17397674
Parashar S, Katz R, Smith NL, Arnold AM, Vaccarino V, Wenger NK, Gottdiener JS (2009) Race, gender and mortality in adults ≥65 years of age with incident heart failure (from the Cardiovascular Health Study). Am J Cardiol 103:1120–1127
pubmed: 19361600
pmcid: 4122325
Azad N, Kathiravelu A, Minoosepeher S, Hebert P, Fergusson D (2011) Gender differences in the etiology of heart failure: a systematic review. J Geriatr Cardiol 8(1):15–23. https://doi.org/10.3724/SP.J.1263.2011.00015
doi: 10.3724/SP.J.1263.2011.00015
pubmed: 22783280
pmcid: 3390064
LaMarca, B, Alexander, BT. Sex differences in cardiovascular physiology and pathophysiology. 2019. Elsevier Science. https://books.google.pl/books?id=GW2RDwAAQBAJ
Roberts CB, Couper DJ, ChangPP JSA, Rosamond WD, Heiss G (2010) Influence of life-course socioeconomic position on incident heart failure in blacks and whites: the atherosclerosis risk in communities. Study Am J Epidemiol 172:717–727
pubmed: 20696652
Ingelsson E, Lind L, Arnlov J, Sundstrom J (2006) Socioeconomic factors as predictors of incident heart failure. J Card Fail 12:540–545
pubmed: 16952788
Fiscella K, Tancredi D, Franks P (2009) Adding socioeconomic status to Framingham scoring to reduce disparities in coronary risk assessment. Am Heart J 157:988–994. https://doi.org/10.1016/j.ahj.2009.03.019
doi: 10.1016/j.ahj.2009.03.019
pubmed: 19464408
Jefferis BJ, Power C, Graham H et al (2004) Effects of childhood socioeconomic circumstances on persistent smoking. Am J Public Health 94(2):279–285
pubmed: 14759943
pmcid: 1448244
Lawlor DA, Batty GD, Morton SM et al (2005) Childhood socioeconomic position, educational attainment, and adult cardiovascular risk factors: the Aberdeen Children of the 1950s cohort study. Am J Public Health 95(7):1245–1251
pubmed: 15983276
pmcid: 1449347
Poulton R, Caspi A, Milne BJ et al (2002) Association between children’s experience of socioeconomic disadvantage and adult health: a life-course study. Lancet. 360(9346):1640–1645
pubmed: 12457787
pmcid: 3752775
Kivimäki M, Lawlor DA, Smith GD et al (2006) Early socioeconomic position and blood pressure in childhood and adulthood: the Cardiovascular Risk in Young Finns Study. Hypertension 47(1):39–44
pubmed: 16330678
Kivimäki M, Smith GD, Elovainio M et al (2006) Socioeconomic circumstances in childhood and blood pressure in adulthood: the Cardiovascular Risk in Young Finns Study. Ann Epidemiol 16(10):737–742
pubmed: 16843680
Sobal J, Stunkard AJ (1989) Socioeconomic status and obesity: a review of the literature. Psychol Bull 105(2):260–275
pubmed: 2648443
Salonen MK, Kajantie E, Osmond C et al (2009) Role of socioeconomic indicators on development of obesity from a life course perspective. J Environ Public Health 2009:625168. https://doi.org/10.1155/2009/625168
doi: 10.1155/2009/625168
pubmed: 20041022
pmcid: 2778550
Parsons TJ, Power C, Logan S et al (1999) Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord 23(suppl 8):S1–S107
pubmed: 10641588
Kittleson MM, Meoni LA, Wang NY et al (2006) Association of childhood socioeconomic status with subsequent coronary heart disease in physicians. Arch Intern Med 166(21):2356–2361
pubmed: 17130389
Pollitt RA, Rose KM, Kaufman JS (2005) Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. BMC Public Health 5:7. https://doi.org/10.1186/1471-2458-5-7
doi: 10.1186/1471-2458-5-7
pubmed: 15661071
pmcid: 548689
Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK (1996) The progression from hypertension to congestive heart failure. JAMA 275:1557–1562
pubmed: 8622246
Ather S, Chan W, Chillar A et al (2011) Association of systolic blood pressure with mortality in patients with heart failure with reduced ejection fraction: a complex relationship. Am Heart J 161(3):567–573. https://doi.org/10.1016/j.ahj.2010.12.009
doi: 10.1016/j.ahj.2010.12.009
pubmed: 21392613
pmcid: 3073655
Lee DS, Massaro JM, Wang TJ et al (2007) Antecedent blood pressure, body mass index, and the risk of incident heart failure in later life. Hypertension 50:869–876
pubmed: 17893376
Levitan E, Yang A, Wolk A, Mittleman A (2009) Adiposity and incidence of heart failure hospitalization and mortality: a population-based prospective study. Circ Heart Fail 2:202–208
pubmed: 19808341
pmcid: 2732194
Mahajan R, Stokes M, Elliott A et al (2020) Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis. Heart 106:58–68
pubmed: 31530572
Kenchaiah S, Pocock SJ, Wang D i (2007) Body mass index and prognosis in patients with chronic heart failure: insights from the Candesartan in Heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation 116:627–636
pubmed: 17638930
Fonarow GC, Srikanthan P, Costanzo MR et al (2007) An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the acute decompensated heart failure national registry. Am Heart J 153:74–81
pubmed: 17174642
Haehling S (2018) Muscle wasting and sarcopenia in heart failure: a brief overview of the current literature. ESC Heart Failure 5:1074–1082. https://doi.org/10.1002/ehf2.12388
doi: 10.1002/ehf2.12388
Carbone S, Billingsley HE, Rodriguez-Miguelez P et al (2019) Lean mass abnormalities in heart failure: the role of sarcopenia, sarcopenic obesity, and cachexia. Curr Probl Cardiol (19):30057. https://doi.org/10.1016/j.cpcardiol.2019.03.006
Anker SD, Ponikowski P, Varney S et al (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349:1050–1053
pubmed: 9107242
Morley JE, Anker SD (2017) Myopenia and precision (P4) medicine. J Cachexia Sarcopenia Muscle 8:857–863
pubmed: 28944582
pmcid: 5700444
Bekfani T, Pellicori P, Morris DA et al (2016) Sarcopenia in patients with heart failure with preserved ejection fraction: impact on muscle strength, exercise capacity and quality of life. Int J Cardiol 222:41–46
pubmed: 27454614
Martone AM, Bianchi L, Abete P et al (2017) The GLISTEN Group Investigators. The incidence of sarcopenia among hospitalized older patients. Results from the Listen study. J Cachexia Sarcopenia Muscle 8:907–914
pubmed: 28913934
pmcid: 5700449
Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC (2004) Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol 43:1439–1444
pubmed: 15093881
Bielecka-Dabrowa A, Fabis J, Mikhailidis DP et al (2018) Prosarcopenic effects of statins may limit their effectiveness in patients with heart failure. Trends Pharmacol Sci 39(4):331–353. https://doi.org/10.1016/j.tips.2018.02.003
doi: 10.1016/j.tips.2018.02.003
pubmed: 29502887
Committee of the New York Heart Association (1994) Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. 9th ed. Boston: Little, Brown & Co p. 253–6.
Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 10(10):933–989
pubmed: 18826876
Stevenson LW, Perloff JK (1989) The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA : The journal of the American Medical Association 261(6):884–888
pubmed: 2913385
van den Broek SA, van Veldhuisen DJ, de Graeff PA, Landsman ML, Hillege H, Lie KI (1992) Comparison between New York Heart Association classification and peak oxygen consumption in the assessment of functional status and prognosis in patients with mild to moderate chronic congestive heart failure secondary to either ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 70(3):359–363
pubmed: 1632403
Pieske B, Tschöpe C, de Boer RA et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40:3297–3317. https://doi.org/10.1093/eurheartj/ehz641
doi: 10.1093/eurheartj/ehz641
pubmed: 31504452
Solomon SD, Anavekar N, Skali H et al (2005) Candesartan in Heart Failure Reduction in Mortality (CHARM) Investigators. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 112(24):3738–3744. https://doi.org/10.1161/CIRCULATIONAHA.105.561423
doi: 10.1161/CIRCULATIONAHA.105.561423
pubmed: 16330684
Modin D, Andersen DM, Biering-Sørensen T (2018) Echo and heart failure: when do people need an echo, and when do they need natriuretic peptides? Echo Res Pract 5(2):R65–R79. https://doi.org/10.1530/ERP-18-0004
doi: 10.1530/ERP-18-0004
pubmed: 29691224
pmcid: 5958420
Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, Portnay EL, Marshalko SJ, Radford MJ, Krumholz HM (2003) The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 42:736–742. https://doi.org/10.1016/S0735-1097(03)00789-7
doi: 10.1016/S0735-1097(03)00789-7
pubmed: 12932612
Pocock SJ, Wang D, Pfeffer MA, Yusuf S, JJ MM, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27:65–75. https://doi.org/10.1093/eurheartj/ehi555
doi: 10.1093/eurheartj/ehi555
pubmed: 16219658
Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, Nochioka K, Biering-Sørensen T (2015) Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging 8:1351–1359. https://doi.org/10.1016/j.jcmg.2015.07.013
doi: 10.1016/j.jcmg.2015.07.013
pubmed: 26577264
Hasselberg NE, Haugaa KH, Sarvari SI, Gullestad L, Andreassen AK, Smiseth OA, Edvardsen T (2015) Left ventricular global longitudinal strain is associated with exercise capacity in failing hearts with preserved and reduced ejection fraction. Eur Heart J Cardiovasc Imaging 16:217–224. https://doi.org/10.1093/ehjci/jeu277
doi: 10.1093/ehjci/jeu277
pubmed: 25552469
Modin D, Sengeløv M, Jørgensen PG, Bruun NE, Olsen FJ, Dons M, Fritz Hansen T, Jensen JS, Biering-Sørensen T (2017) Global longitudinal strain corrected by RR interval is a superior predictor of all-cause mortality in patients with systolic heart failure and atrial fibrillation. ESC Heart Failure 5:311–318. https://doi.org/10.1002/ehf2.12220
doi: 10.1002/ehf2.12220
pubmed: 29024533
pmcid: 5880669
Risum N, Williams ES, Khouri MG, Jackson KP, Olsen NT, Jons C, Storm KS, Velazquez EJ, Kisslo J, Bruun NE et al (2013) Mechanical dyssynchrony evaluated by tissue Doppler cross-correlation analysis is associated with long-term survival in patients after cardiac resynchronization therapy. Eur Heart J 34:48–56. https://doi.org/10.1093/eurheartj/ehs035
doi: 10.1093/eurheartj/ehs035
pubmed: 22390911
Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, Florian A, Sjøli B, Brunvand H, Køber L et al (2013) Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 6:841–850. https://doi.org/10.1016/j.jcmg.2013.03.005
doi: 10.1016/j.jcmg.2013.03.005
pubmed: 23850251
Biering-Sorensen T, Knappe D, Pouleur AC, Claggett B, Wang PJ, Moss AJ, Solomon SD, Kutyifa V (2017) Regional longitudinal deformation improves prediction of ventricular tachyarrhythmias in patients with heart failure with reduced ejection fraction: a MADIT-CRT Substudy (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). Circulation: Cardiovascular Imaging 10:e005096. https://doi.org/10.1161/CIRCIMAGING.116.005096
doi: 10.1161/CIRCIMAGING.116.005096
Biering-Sørensen T, Olsen FJ, Storm K, Fritz-Hansen T, Olsen NT, Jøns C, Vinther M, Søgaard P, Risum N (2016) Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17:722–731
pubmed: 27084397
Pinamonti B, Di Lenarda A, Sinagra G, Camerini F (1993) Restrictive left ventricular filling pattern in dilated cardiomyopathy assessed by Doppler echocardiography: clinical, echocardiographic and hemodynamic correlations and prognostic implications. Heart Muscle Disease Study Group. J Am Coll Cardiol 22:808–815. https://doi.org/10.1016/0735-1097(93)90195-7
doi: 10.1016/0735-1097(93)90195-7
pubmed: 8354816
Xie GY, Berk MR, Smith MD, Gurley JC, De Maria AN (1994) Prognostic value of Doppler transmitral flow patterns in patients with congestive heart failure. J Am Coll Cardiol 24:132–139. https://doi.org/10.1016/0735-1097(94)90553-3
doi: 10.1016/0735-1097(94)90553-3
pubmed: 8006256
Acil T, Wichter T, Stypmann J, Janssen F, Paul M, Grude M, Scheld HH, Breithardt G, Bruch C (2005) Prognostic value of tissue Doppler imaging in patients with chronic congestive heart failure. Int J Cardiol 103:175–181. https://doi.org/10.1016/j.ijcard.2004.08.048
doi: 10.1016/j.ijcard.2004.08.048
pubmed: 16080977
Rossi A, Temporelli PL, Quintana M, Dini FL, Ghio S, Hillis GS, Klein AL, Marsan NA, Prior DL, Yu CM et al (2009) Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). Eur J Heart Fail 11:929–936. https://doi.org/10.1093/eurjhf/hfp112
doi: 10.1093/eurjhf/hfp112
pubmed: 19789395
Hsiao S-H, Chiou K-R (2013) Left atrial expansion index predicts all-cause mortality and heart failure admissions in dyspnoea. Eur J Heart Fail 15:1245–1252. https://doi.org/10.1093/eurjhf/hfbib87
doi: 10.1093/eurjhf/hfbib87
pubmed: 23703107
Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F, Tavazzi L (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188. https://doi.org/10.1016/S0735-1097(00)01102-5
doi: 10.1016/S0735-1097(00)01102-5
pubmed: 11153735
Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, Pitt B, Pfeffer MA, Solomon SD (2015) Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation 132:402–414. https://doi.org/10.1161/CIRCULATIONAHA.115.015884
doi: 10.1161/CIRCULATIONAHA.115.015884
pubmed: 26130119
pmcid: 4526442
Huang W, Chai SC, Lee SGS, MacDonald MR, Leong KTG (2017) Prognostic factors after index hospitalization for heart failure with preserved ejection fraction. Am J Cardiol 119:2017–2020. https://doi.org/10.1016/j.amjcard.2017.03.032
doi: 10.1016/j.amjcard.2017.03.032
pubmed: 28477861
Biering-Sørensen T, Santos M, Rivero J, McCullough SD, West E, Opotowsky AR, Waxman AB, Systrom DM, Shah AM (2017) Left ventricular deformation at rest predicts exercise-induced elevation in pulmonary artery wedge pressure in patients with unexplained dyspnoea. Eur J Heart Fail 19:101–110
pubmed: 27878925
Wang J, Fang F, Wai-Kwok Yip G, Sanderson JE, Feng W, Xie JM, Luo XX, Lee AP, Lam YY (2015) Left ventricular long-axis performance during exercise is an important prognosticator in patients with heart failure and preserved ejection fraction. Int J Cardiol 178:131–135. https://doi.org/10.1016/j.ijcard.2014.10.130
doi: 10.1016/j.ijcard.2014.10.130
pubmed: 25464236
Okura H, Kubo T, Asawa K, Toda I, Yoshiyama M, Yoshikawa J, Yoshida K (2009) Elevated E/E′ predicts prognosis in congestive heart failure patients with preserved systolic function. Circ J 73:86–91
pubmed: 19015586
Santos AB, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Fang JC, Zile MR, Pitt B, Solomon SD et al (2016) Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail 9:e002763. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002763
doi: 10.1161/CIRCHEARTFAILURE.115.002763
pubmed: 27056882
pmcid: 4826720
Melenovsky V, Hwang S-J, Redfield MM, Zakeri R, Lin G, Borlaug BA (2015) Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ Heart Fail 8:295–303. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001667
doi: 10.1161/CIRCHEARTFAILURE.114.001667
pubmed: 25593126
Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM (2009) Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol 53:1119–1126. https://doi.org/10.1016/j.jacc.2008.11.051
doi: 10.1016/j.jacc.2008.11.051
pubmed: 19324256
pmcid: 2736110
Melenovsky V, Hwang S-J, Lin G, Redfield MM, Borlaug BA (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462
pubmed: 24875795
pmcid: 4425842
Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, Roger VL, Redfield MM (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320. https://doi.org/10.1161/CIRCULATIONAHA.113.008461
doi: 10.1161/CIRCULATIONAHA.113.008461
pubmed: 25391518
pmcid: 4276536
Olsen FJ, Jørgensen PG, Dons M, Svendsen JH, Køber L, Jensen JS, Biering-Sørensen T (2016) Echocardiographic quantification of systolic function during atrial fibrillation: probing the ‘ten heart cycles’ rule. Futur Cardiol 12:159–165. https://doi.org/10.2217/fca.15.77
doi: 10.2217/fca.15.77
Von Jeinsen B, Short M, Larson M et al Prognostic significance of echocardiographic measures of cardiac remodeling. Journal of the American Society of Echocardiograph 33:72–81. https://doi.org/10.1016/j.echo.2019.08.001
Hsiao SH, Chu KA, Wu CJ, Chiou KR (2016) Left atrial expansion index predicts left ventricular filling pressure and adverse events in acute heart failure with severe left ventricular dysfunction. J Card Fail 22(4):272–279. https://doi.org/10.1016/j.cardfail.2016.01.009
doi: 10.1016/j.cardfail.2016.01.009
pubmed: 26805452
Yip G, Wang M, Zhang Y, Fung JWH, Ho PY, Sanderson JE (2002) Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart 87:121–125. https://doi.org/10.1136/heart.87.2.121
doi: 10.1136/heart.87.2.121
pubmed: 11796546
pmcid: 1766981
Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, Zile MR, Voors AA, Lefkowitz MP, Packer M et al (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63:447–456. https://doi.org/10.1016/j.jacc.2013.09.052
doi: 10.1016/j.jacc.2013.09.052
pubmed: 24184245
Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29:1283–1289. https://doi.org/10.1093/eurheartj/ehn141
doi: 10.1093/eurheartj/ehn141
pubmed: 18385117
Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM (2017) LA strain categorization of LV diastolic dysfunction. JACC Cardiovasc Imaging 10:735–743
pubmed: 28017389
Zugck C, Kruger C, Durr S et al (2000) Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy? Eur Heart J 21:540–549
pubmed: 10775009
Guazzi M, Dickstein K, Vicenzi M, Arena R (2009) Six-minute walk test and cardiopulmonary exercise testing in patients with chronic heart failure: a comparative analysis on clinical and prognostic insights. Circ Heart Fail 2:549–555. https://doi.org/10.1161/CIRCHEARTFAILURE.109.881326
doi: 10.1161/CIRCHEARTFAILURE.109.881326
pubmed: 19919979
Hsich E, Gorodeski EZ, Starling RC, Blackstone EH, Ishwaran H, Lauer MS (2009) Importance of treadmill exercise time as an initial prognostic screening tool in patients with systolic left ventricular dysfunction. Circulation 119:3189–3197. https://doi.org/10.1161/CIRCULATIONAHA.109.848382
doi: 10.1161/CIRCULATIONAHA.109.848382
pubmed: 19528334
pmcid: 4205105
Bittner V, Weiner DH, Yusuf S, Rogers WJ, McIntyre KM, Bangdiwala SI et al (1993) Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators. JAMA 270:1702–1707
pubmed: 8411500
Rostagno C, Olivo G, Comeglio M, Boddi V, Banchelli M, Galanti G, Gensini GF (2003) Prognostic value of 6-minute walk corridor test in patients with mild to moderate heart failure: comparison with other methods of functional evaluation. Eur J Heart Fail 5:247–252
pubmed: 12798821
Cahalin LP, Mathier MA, Semigran MJ, Dec GW, DiSalvo TG (1996) The six-minute walk test predicts peak oxygen uptake and survival in patients with advanced heart failure. Chest 110:325–332
pubmed: 8697828
Arslan S, Erol MK, Gundogdu F et al (2007) Prognostic value of 6-minute walk test in stable outpatients with heart failure. Tex Heart Inst J 34(2):166–169
pubmed: 17622362
pmcid: 1894714
Ingle L, Cleland JG, Clark AL (2014) The long-term prognostic significance of 6-minute walk test distance in patients with chronic heart failure. Biomed Res Int 7:2014
den Boer SL, Flipse DHK, van der Meulen MH et al (2017) Six-minute walk test as a predictor for outcome in children with dilated cardiomyopathy and chronic stable heart failure. Pediatr Cardiol 38:465–471. https://doi.org/10.1007/s00246-016-1536-y
doi: 10.1007/s00246-016-1536-y
Faggiano P, D’Aloia A, Gualeni A et al (2004) The 6 minute walking test in chronic heart failure: indications, interpretation and limitations from a review of the literature. Eur J Heart Fail. https://doi.org/10.1016/j.ejheart.2003.11.024
Zugck C, Kruger C, Durr S. Is the 6-min walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy. Eur Heart J 200021540549
Opasich C, Pinna GD, Mazza A. Six-minute walking performance in patients with moderate-to-severe heart failure. It is a useful indicator in clinical practice. Eur Heart J 200122488496
Steffen TM, Hacker TA, Mollinger L (2002) Age- and gender-related test performance in community-dwelling elderly people: 6-min walk test, Berg balance scale, timed up and go test and gait speeds. Phys Ther
ATS statement: guidelines for the 6-min walking test. Am J Respir Crit Care Med 2002; 166: 111–117
Enright PL, Sherrill DL. Reference equations for the 6-min walk in healthy adults. Am J Respir Crit Care Med 199815813841387
Malhotra R, Bakken K, D’Elia E, Lewis GD (2016) Cardiopulmonary exercise testing in heart failure. JACC Heart Fail 4(8):607–616
pubmed: 27289406
Ritt LE, Myers J, Stein R et al (2015) Additive prognostic value of a cardiopulmonary exercise test score in patients with heart failure and intermediate risk. Int J Cardiol 178:262–264
pubmed: 25464266
O’Neill JO, Young JB, Pothier CE, Lauer MS (2005) Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation 111:2313–2318
pubmed: 15867168
Arena R, Myers J, Abella J et al (2009) Determining the preferred percent-predicted equation for peak oxygen consumption in patients with heart failure. Circ Heart Fail 2:113–120
pubmed: 19808326
pmcid: 2747756
Weber KT, Kinasewitz GT, Janicki JS et al (1982) Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure. Circulation 65:1213–1223
pubmed: 6804111
Sun XG, Hansen JE, Beshai JF, Wasserman K (2010) Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol 55:1814–1823
pubmed: 20413031
Osada N, Chaitman BR, Miller LW et al (1998) Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol 31:577–582
pubmed: 9502638
Myers J, Arena R, Dewey F et al (2008) A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J 156:1177–1183
pubmed: 19033016
Wasserman K (2002) Cardiopulmonary exercise testing and cardiovascular health. Armonk, NY: Futura Pub. Co
Guazzi M, Raimondo R, Vicenzi M et al (2007) Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol 50:299–308
pubmed: 17659196
Ramalho SHR, Cipriano Junior G, Vieira PJC et al (2019) Inspiratory muscle strength and six-minute walking distance in heart failure: prognostic utility in a 10 years follow up cohort study. PLoS One 14(8):e0220638. https://doi.org/10.1371/journal.pone.0220638
doi: 10.1371/journal.pone.0220638
pubmed: 31369636
pmcid: 6675323
Meyer FJ, Borst MM, Zugck C, Kirschke A, Schellberg D, Kubler W et al (2001) Respiratory muscle dysfunction in congestive heart failure: clinical correlation and prognostic significance. Circulation 103(17):2153–2158. https://doi.org/10.1161/01.cir.103.17.2153
doi: 10.1161/01.cir.103.17.2153
pubmed: 11331255
Frankenstein L, Meyer FJ, Sigg C, Nelles M, Schellberg D, Remppis A et al (2008) Is serial determination of inspiratory muscle strength a useful prognostic marker in chronic heart failure? Eur J Cardiovasc Prev Rehabil 15(2):156–161. https://doi.org/10.1097/HJR.0b013e3282f0d6ea
doi: 10.1097/HJR.0b013e3282f0d6ea
pubmed: 18391641
Frankenstein L, Nelles M, Meyer FJ, Sigg C, Schellberg D, Remppis BA, et al. (2009) Validity, prognostic value and optimal cutoff of respiratory muscle strength in patients with chronic heart failure changes with beta-blocker treatment. Eur J Cardiovasc Prev Rehabil 16(4):424–9. https://doi.org/10.1097/HJR.0b013e3283030a7e
Ketchum E, & Levy W (2011). Establishing prognosis in heart failure: a multimarker approach. Progress in Cardiovascular Diseases, 54(2), 86-96.
Nadar SK, Shaikh MM (2019) Biomarkers in routine heart failure clinical care. Card Fail Rev 5(1):50–56. https://doi.org/10.15420/cfr.2018.27.2
Latini R, Masson S, Anand I, Salio M, Hester A, Judd D, Barlera S, Maggioni AP, Tognoni G, Cohn JN (2004) The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. Eur Heart J 25:292–299
Doust JA, Pietrzak E, Dobson A, Glasziou P (2005) How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review, BMJ 330:625-634
Maisel A, Hollander JE, Guss D, McCullough P, Nowak R, Green G, Saltzberg M, Ellison SR, Bhalla MA, Bhalla V, Clopton P, Jesse R (2004) Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol 44:1328-1333
Januzzi JL Jr., Rehman SU, Mohammed AA et al. (2011) Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58:1881–9. https://doi.org/10.1016/j.jacc.2011.03.072
Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, Coats AJS, Metra M, Mebazaa A, Ruschitzka F, Lainscak M, Filippatos G, Seferovic PM, Meijers WC, Bayes-Genis A, Mueller T, Richards M, Januzzi JL Jr, on behalf of the Heart Failure Association of the European Society of Cardiology (2019) Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail 1:715–731
Tromp J, Khan MAF, Mentz RJ, et al. (2017) Biomarker Profiles of acute heart failure patients with a mid-range ejection fraction. JACC: Heart Failure 5:507-517
Tromp JB, Westenbrink D, Ouwerkerk W, et al. (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72 (10) 1081-1090.
Bielecka-Dabrowa A, Gluba-Brzózka A, Michalska-Kasiczak M, et al. (2015) The multi-biomarker approach for heart failure in patients with hypertension. Int J Mol Sci 16:10715-10733.
Michalska-Kasiczak M, Bielecka-Dabrowa A, von Haehling S et al. (2018) Biomarkers, myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: an overview. Arch Med Sci 14:890–909. https://doi.org/10.5114/aoms.2018.76279 .
Friedl A, Stoesz SP, Buckley P, Gould MN (1999) Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J 31:433–41. https://doi.org/10.1023/A:1003708808934 .
Corsten MF, Dennert R, Jochems S et al. (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506. https://doi.org/10.1161/CIRCGENETICS.110.957415 .
Yan H, Ma F, Zhang Y et al. (2017) miRNAs as biomarkers for diagnosis of heart failure: a systematic review and meta-analysis. Medicine (Baltimore) 96:e6825. https://doi.org/10.1097/MD.0000000000006825
Komajda M, Anker S, Cowie M, et al. (2016) Physician’s adherence to guideline-recommended medications in heart failure with reduced ejection fraction: data from the QUALIFY global survey. Eur J Heart Fail 18:514–522. doi:10.1002/ejhf.510.
Sosnowska-Pasiarska B, Bartkowiak R, Wożakowska-Kapłon B, et al. (2013) Population of Polish patients participating in the Heart Failure Pilot Survey (ESC-HF Pilot). Kardiol Pol 71:234-240. https://doi.org/10.5603/KP.2013.0034 .
Maggioni AP, Dahlstrom U, Filippatos G, et al. (2010) EURObservational Research Programme: the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail 12:1076-1084. https://doi.org/10.1093/eurjhf/hfq154 .
Fonarow GC, Adams KF, Abraham WT, et al. (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis (ADHERE). JAMA 293(5): 572–580, https://doi.org/10.1001/jama.293.5.572
Auble TE, Hsieh M, Gardner W, et al. (2005) A prediction rule to identify low-risk patients with heart failure. Acad Emerg Med 12(6): 514–521, https://doi.org/10.1197/j.aem.2004.11.026
Abraham WT, Fonarow GC, Albert NM, et al. (2008) Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am Coll Cardiol 52(5): 347–356, https://doi.org/10.1016/j.jacc.2008.04.028
Peterson PN, Rumsfeld JS, Liang Li, et al. (2010) American Heart Association get with the guidelines-heart failure program. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ Cardiovasc Qual Outcomes 3(1): 25–32, https://doi.org/10.1161/CIRCOUTCOMES.109.854877
Aaronson KD, Schwartz JS, Chen TM, et al. (1997) Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95(12): 2660–2667, https://doi.org/10.1161/01.CIR.95.12.2660
Levy WC, Mozaffarian D, Linker DT, et al. (2006) The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113(11): 1424–1433, doi: https://doi.org/10.1161/CIRCULATIONAHA.105.584102
Pocock SJ, Ariti CA, McMurray JJV, et al. (2013) Meta-analysis global group in chronic heart failure. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J 34(19): 1404–1413, https://doi.org/10.1093/eurheartj/ehs337
Pocock SJ, Wang D, Pfeffer MA et al. (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27: 65–75
Komajda M., Carson P.E., Hetzel S. et al. (2011) Factors associated with outcome in heart failure with preserved ejection fraction: findings from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE). Circ Heart Fail 4: 27–35
Rohde LE, Goldraich L, Polanczyk CA, Borges AP, Biolo A, Rabelo E, Beck-Da-Silva L, Clausell N (2006) A simple clinically based predictive rule for heart failure in-hospital mortality. J Card Fail 12:587–593
pubmed: 17045176
Chuda A, Berner J, Lelonek M (2019) The journey of the heart failure patient, based on data from a single center. Advances in Clinical and Experimental Medicine: official organ Wroclaw Medical University 28(4):489–498
Allen LA, Matlock DD, Shetterly SM et al (2017) Use of risk models to predict death in the next year among individual ambulatory patients with heart failure. JAMA Cardiol 2(4):435–441. https://doi.org/10.1001/jamacardio.2016.5036
doi: 10.1001/jamacardio.2016.5036
pubmed: 28002546