Defining the epitope of a blood-brain barrier crossing single domain antibody specific for the type 1 insulin-like growth factor receptor.
Amino Acid Sequence
Antibody Affinity
/ immunology
Blood-Brain Barrier
/ metabolism
Epitope Mapping
Epitopes
/ chemistry
Humans
Molecular Conformation
Molecular Docking Simulation
Molecular Dynamics Simulation
Protein Binding
Quantitative Structure-Activity Relationship
Receptor, IGF Type 1
/ antagonists & inhibitors
Single-Domain Antibodies
/ chemistry
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 02 2021
19 02 2021
Historique:
received:
25
06
2020
accepted:
07
01
2021
entrez:
20
2
2021
pubmed:
21
2
2021
medline:
15
12
2021
Statut:
epublish
Résumé
Ligand-activated signaling through the type 1 insulin-like growth factor receptor (IGF1R) is implicated in many physiological processes ranging from normal human growth to cancer proliferation and metastasis. IGF1R has also emerged as a target for receptor-mediated transcytosis, a transport phenomenon that can be exploited to shuttle biotherapeutics across the blood-brain barrier (BBB). We employed differential hydrogen-deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) to characterize the interactions of the IGF1R ectodomain with a recently discovered BBB-crossing single-domain antibody (sdAb), VHH-IR5, in comparison with IGF-1 binding. HDX-MS confirmed that IGF-1 induced global conformational shifts in the L1/FnIII-1/-2 domains and α-CT helix of IGF1R. In contrast, the VHH-IR5 sdAb-mediated changes in conformational dynamics were limited to the α-CT helix and its immediate vicinity (L1 domain). High-resolution NMR spectroscopy titration data and linear peptide scanning demonstrated that VHH-IR5 has high-affinity binding interactions with a peptide sequence around the C-terminal region of the α-CT helix. Taken together, these results define a core linear epitope for VHH-IR5 within the α-CT helix, overlapping the IGF-1 binding site, and suggest a potential role for the α-CT helix in sdAb-mediated transcytosis.
Identifiants
pubmed: 33608571
doi: 10.1038/s41598-021-83198-w
pii: 10.1038/s41598-021-83198-w
pmc: PMC7896052
doi:
Substances chimiques
Epitopes
0
IGF1R protein, human
0
Single-Domain Antibodies
0
Receptor, IGF Type 1
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4284Références
Adams, T. E., Epa, V. C., Garrett, T. P. & Ward, C. W. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol. Life Sci. 57, 1050–1093 (2000).
pubmed: 10961344
doi: 10.1007/PL00000744
Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 4, 505–518 (2004).
pubmed: 15229476
doi: 10.1038/nrc1387
Chitnis, M. M., Yuen, J. S., Protheroe, A. S., Pollak, M. & Macaulay, V. M. The type 1 insulin-like growth factor receptor pathway. Clin. Cancer Res. 14, 6364–6370 (2008).
pubmed: 18927274
doi: 10.1158/1078-0432.CCR-07-4879
Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer 12, 159–169 (2012).
pubmed: 22337149
doi: 10.1038/nrc3215
Stanimirovic, D. B., Sandhu, J. K. & Costain, W. J. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs 32, 547–559 (2018).
pubmed: 30306341
pmcid: 6290705
doi: 10.1007/s40259-018-0309-y
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).
pubmed: 19664713
doi: 10.1016/j.nbd.2009.07.030
Deeken, J. F. & Löscher, W. The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13, 1663–1674 (2007).
pubmed: 17363519
doi: 10.1158/1078-0432.CCR-06-2854
Pulgar, V. M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 12, 1019 (2018).
pubmed: 30686985
doi: 10.3389/fnins.2018.01019
Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).
pubmed: 24411731
doi: 10.1016/j.neuron.2013.10.061
Haqqani, A. S. et al. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood–brain barrier in vitro is dependent on its binding affinity. J. Neurochem. 146, 735–752 (2018).
pubmed: 29877588
pmcid: 6175443
doi: 10.1111/jnc.14482
Boado, R. J., Lu, J. Z., Hui, E. K. & Pardridge, W. M. Reduction in brain heparan sulfate with systemic administration of an IgG Trojan horse-sulfamidase fusion protein in the mucopolysaccharidosis type IIIA mouse. Mol. Pharm. 15, 602–608 (2018).
pubmed: 29251941
doi: 10.1021/acs.molpharmaceut.7b00958
Wagner, S. et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood–brain barrier model. PLoS ONE 7, e32568 (2012).
pubmed: 22396775
pmcid: 3291552
doi: 10.1371/journal.pone.0032568
O’Sullivan, C. C. et al. ANG1005 for breast cancer brain metastases: correlation between. Breast Cancer Res. Treat. 160, 51–59 (2016).
pubmed: 27620882
pmcid: 6362453
doi: 10.1007/s10549-016-3972-z
Giugliani, R. et al. Neurocognitive and somatic stabilization in pediatric patients with severe mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1–2 trial. Orphanet. J. Rare Dis. 13, 110 (2018).
pubmed: 29976218
pmcid: 6034233
doi: 10.1186/s13023-018-0849-8
Boado, R. J., Lu, J. Z., Hui, E. K. & Pardridge, W. M. Insulin receptor antibody-sulfamidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type A cells. Mol. Pharm. 11, 2928–2934 (2014).
pubmed: 24949884
pmcid: 4137762
doi: 10.1021/mp500258p
Aday, S., Cecchelli, R., Hallier-Vanuxeem, D., Dehouck, M. P. & Ferreira, L. Stem cell-based human blood–brain barrier models for drug discovery and delivery. Trends Biotechnol. 34, 382–393 (2016).
pubmed: 26838094
doi: 10.1016/j.tibtech.2016.01.001
Couch, J. A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood–brain barrier. Sci. Transl. Med. 5, 1–12 (2013).
doi: 10.1126/scitranslmed.3005338
Ohshima-Hosoyama, S. et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS ONE 7, e39036 (2012).
pubmed: 22745701
pmcid: 3380056
doi: 10.1371/journal.pone.0039036
Bondy, C., Werner, H., Roberts, C. T. & LeRoith, D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46, 909–923 (1992).
pubmed: 1311816
doi: 10.1016/0306-4522(92)90193-6
Werner, H. & LeRoith, D. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur. Neuropsychopharmacol. 24, 1947–1953 (2014).
pubmed: 24529663
doi: 10.1016/j.euroneuro.2014.01.020
Ribecco-Lutkiewicz, M. et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci. Rep. 8, 1873 (2018).
pubmed: 29382846
pmcid: 5789839
doi: 10.1038/s41598-018-19522-8
Kavran, J.M. et al. How IGF-1 activates its receptor. Elife 3 (2014).
Li, J., Choi, E., Yu, H. & Bai, X. C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat. Commun. 10, 4567 (2019).
pubmed: 31594955
pmcid: 6783537
doi: 10.1038/s41467-019-12564-0
Zhang, X. et al. Visualization of ligand-bound ectodomain assembly in the full-length human IGF-1 receptor by Cryo-em single-particle analysis. Structure 28, 555–561 (2020).
pubmed: 32275863
doi: 10.1016/j.str.2020.03.007
Surinya, K. H. et al. An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors. J. Biol. Chem. 283, 5355–5363 (2008).
pubmed: 18056713
doi: 10.1074/jbc.M707054200
Christoffersen, C. T. et al. Negative cooperativity in the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor. Endocrinology 135, 472–475 (1994).
pubmed: 8013387
doi: 10.1210/endo.135.1.8013387
Stanimirovic, D., Kemmerich, K., Haqqani, A., Sulea, T., Arbabi-Ghahroudi, M., Massie, B., and Gilbert, R. Insulin-like growth factor 1 receptor -specific antibodies and uses thereof (United States, 2017, US20170015748A1).
Calzone, F. J. et al. Epitope-specific mechanisms of IGF1R inhibition by ganitumab. PLoS ONE 8, e55135 (2013).
pubmed: 23383308
pmcid: 3562316
doi: 10.1371/journal.pone.0055135
Doern, A. et al. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo. J. Biol. Chem. 284, 10254–10267 (2009).
pubmed: 19211557
pmcid: 2665079
doi: 10.1074/jbc.M809709200
Soos, M. A. et al. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding, and biological activity. J. Biol. Chem. 267, 12955–12963 (1992).
pubmed: 1377676
doi: 10.1016/S0021-9258(18)42367-8
Keyhanfar, M., Booker, G. W., Whittaker, J., Wallace, J. C. & Forbes, B. E. Precise mapping of an IGF-I-binding site on the IGF-1R. Biochem. J. 401, 269–277 (2007).
pubmed: 16981855
doi: 10.1042/BJ20060890
Kelly, G. M., Buckley, D. A., Kiely, P. A., Adams, D. R. & O’Connor, R. Serine phosphorylation of the insulin-like growth factor I (IGF-1) receptor C-terminal tail restrains kinase activity and cell growth. J. Biol. Chem. 287, 28180–28194 (2012).
pubmed: 22685298
pmcid: 3431707
doi: 10.1074/jbc.M112.385757
Brown, K. A. & Wilson, D. J. Bottom-up hydrogen deuterium exchange mass spectrometry: data analysis and interpretation. Analyst 142, 2874–2886 (2017).
pubmed: 28702519
doi: 10.1039/C7AN00662D
Zhu, S. et al. Hydrogen-deuterium exchange epitope mapping reveals distinct neutralizing mechanisms for two monoclonal antibodies against diphtheria toxin. Biochemistry 58, 646–656 (2019).
pubmed: 30560647
doi: 10.1021/acs.biochem.8b01123
Puchades, C. et al. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Sci Rep 9, 4735 (2019).
pubmed: 30894620
pmcid: 6427009
doi: 10.1038/s41598-019-41179-0
Qiang, G. et al. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 63, 1394–1409 (2014).
pubmed: 24651808
pmcid: 3964510
doi: 10.2337/db13-0334
Houde, D. & Demarest, S. J. Fine details of IGF-1R activation, inhibition, and asymmetry determined by associated hydrogen/deuterium-exchange and peptide mass mapping. Structure 19, 890–900 (2011).
pubmed: 21645859
doi: 10.1016/j.str.2011.03.014
Xu, Y. et al. How ligand binds to the type 1 insulin-like growth factor receptor. Nat. Commun. 9, 821 (2018).
pubmed: 29483580
pmcid: 5826941
doi: 10.1038/s41467-018-03219-7
Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005).
pubmed: 16341750
doi: 10.1007/s10858-005-4425-x
Menting, J. G. et al. Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like growth factor hybrid receptors. Structure 23, 1271–1282 (2015).
pubmed: 26027733
doi: 10.1016/j.str.2015.04.016
Ni, F. Recent developments in transferred NOE methods. Prog. Nucl. Magn. Reson. Spectrosc. 26, 517–606 (1994).
doi: 10.1016/0079-6565(94)90000-0
Nilvebrant, J. & Rockberg, J. An introduction to epitope mapping. Methods Mol. Biol. 1785, 1–10 (2018).
pubmed: 29714008
doi: 10.1007/978-1-4939-7841-0_1
Whittaker, J. et al. Alanine scanning mutagenesis of a type 1 insulin-like growth factor receptor ligand binding site. J. Biol. Chem. 276, 43980–43986 (2001).
pubmed: 11500492
doi: 10.1074/jbc.M102863200
Slysz, G. W., Percy, A. J. & Schriemer, D. C. Restraining expansion of the peak envelope in H/D exchange-MS and its application in detecting perturbations of protein structure/dynamics. Anal. Chem. 80, 7004–7011 (2008).
pubmed: 18707134
doi: 10.1021/ac800897q
Rey, M. et al. Mass spec studio for integrative structural biology. Structure 22, 1538–1548 (2014).
pubmed: 25242457
pmcid: 4391204
doi: 10.1016/j.str.2014.08.013
Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
doi: 10.1016/S0022-2836(05)80360-2
Cavanagh, J., Fairbrother, W. J., Palmer, A. G. III. & Skelton, N. J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, Cambridge, 1996).
Worley, B. Subrandom methods for multidimensional nonuniform sampling. J. Magn. Reson. 269, 128–137 (2016).
pubmed: 27301071
pmcid: 4958578
doi: 10.1016/j.jmr.2016.06.007
Worley, B. Convex accelerated maximum entropy reconstruction. J. Magn. Reson. 265, 90–98 (2016).
pubmed: 26894476
pmcid: 4818692
doi: 10.1016/j.jmr.2016.02.003
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
pubmed: 8520220
doi: 10.1007/BF00197809
Johnson, B. A. & Blevins, R. A. NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).
pubmed: 22911360
doi: 10.1007/BF00404272
Geysen, H. M., Rodda, S. J., Mason, T. J., Tribbick, G. & Schoofs, P. G. Strategies for epitope analysis using peptide synthesis. J. Immunol. Methods 102, 259–274 (1987).
pubmed: 2443575
doi: 10.1016/0022-1759(87)90085-8
Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).
pubmed: 31249422
pmcid: 6614034
doi: 10.1038/s41592-019-0459-y