Defining the epitope of a blood-brain barrier crossing single domain antibody specific for the type 1 insulin-like growth factor receptor.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 02 2021
Historique:
received: 25 06 2020
accepted: 07 01 2021
entrez: 20 2 2021
pubmed: 21 2 2021
medline: 15 12 2021
Statut: epublish

Résumé

Ligand-activated signaling through the type 1 insulin-like growth factor receptor (IGF1R) is implicated in many physiological processes ranging from normal human growth to cancer proliferation and metastasis. IGF1R has also emerged as a target for receptor-mediated transcytosis, a transport phenomenon that can be exploited to shuttle biotherapeutics across the blood-brain barrier (BBB). We employed differential hydrogen-deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) to characterize the interactions of the IGF1R ectodomain with a recently discovered BBB-crossing single-domain antibody (sdAb), VHH-IR5, in comparison with IGF-1 binding. HDX-MS confirmed that IGF-1 induced global conformational shifts in the L1/FnIII-1/-2 domains and α-CT helix of IGF1R. In contrast, the VHH-IR5 sdAb-mediated changes in conformational dynamics were limited to the α-CT helix and its immediate vicinity (L1 domain). High-resolution NMR spectroscopy titration data and linear peptide scanning demonstrated that VHH-IR5 has high-affinity binding interactions with a peptide sequence around the C-terminal region of the α-CT helix. Taken together, these results define a core linear epitope for VHH-IR5 within the α-CT helix, overlapping the IGF-1 binding site, and suggest a potential role for the α-CT helix in sdAb-mediated transcytosis.

Identifiants

pubmed: 33608571
doi: 10.1038/s41598-021-83198-w
pii: 10.1038/s41598-021-83198-w
pmc: PMC7896052
doi:

Substances chimiques

Epitopes 0
IGF1R protein, human 0
Single-Domain Antibodies 0
Receptor, IGF Type 1 EC 2.7.10.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4284

Références

Adams, T. E., Epa, V. C., Garrett, T. P. & Ward, C. W. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol. Life Sci. 57, 1050–1093 (2000).
pubmed: 10961344 doi: 10.1007/PL00000744
Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 4, 505–518 (2004).
pubmed: 15229476 doi: 10.1038/nrc1387
Chitnis, M. M., Yuen, J. S., Protheroe, A. S., Pollak, M. & Macaulay, V. M. The type 1 insulin-like growth factor receptor pathway. Clin. Cancer Res. 14, 6364–6370 (2008).
pubmed: 18927274 doi: 10.1158/1078-0432.CCR-07-4879
Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer 12, 159–169 (2012).
pubmed: 22337149 doi: 10.1038/nrc3215
Stanimirovic, D. B., Sandhu, J. K. & Costain, W. J. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs 32, 547–559 (2018).
pubmed: 30306341 pmcid: 6290705 doi: 10.1007/s40259-018-0309-y
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).
pubmed: 19664713 doi: 10.1016/j.nbd.2009.07.030
Deeken, J. F. & Löscher, W. The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13, 1663–1674 (2007).
pubmed: 17363519 doi: 10.1158/1078-0432.CCR-06-2854
Pulgar, V. M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 12, 1019 (2018).
pubmed: 30686985 doi: 10.3389/fnins.2018.01019
Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).
pubmed: 24411731 doi: 10.1016/j.neuron.2013.10.061
Haqqani, A. S. et al. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood–brain barrier in vitro is dependent on its binding affinity. J. Neurochem. 146, 735–752 (2018).
pubmed: 29877588 pmcid: 6175443 doi: 10.1111/jnc.14482
Boado, R. J., Lu, J. Z., Hui, E. K. & Pardridge, W. M. Reduction in brain heparan sulfate with systemic administration of an IgG Trojan horse-sulfamidase fusion protein in the mucopolysaccharidosis type IIIA mouse. Mol. Pharm. 15, 602–608 (2018).
pubmed: 29251941 doi: 10.1021/acs.molpharmaceut.7b00958
Wagner, S. et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood–brain barrier model. PLoS ONE 7, e32568 (2012).
pubmed: 22396775 pmcid: 3291552 doi: 10.1371/journal.pone.0032568
O’Sullivan, C. C. et al. ANG1005 for breast cancer brain metastases: correlation between. Breast Cancer Res. Treat. 160, 51–59 (2016).
pubmed: 27620882 pmcid: 6362453 doi: 10.1007/s10549-016-3972-z
Giugliani, R. et al. Neurocognitive and somatic stabilization in pediatric patients with severe mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1–2 trial. Orphanet. J. Rare Dis. 13, 110 (2018).
pubmed: 29976218 pmcid: 6034233 doi: 10.1186/s13023-018-0849-8
Boado, R. J., Lu, J. Z., Hui, E. K. & Pardridge, W. M. Insulin receptor antibody-sulfamidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type A cells. Mol. Pharm. 11, 2928–2934 (2014).
pubmed: 24949884 pmcid: 4137762 doi: 10.1021/mp500258p
Aday, S., Cecchelli, R., Hallier-Vanuxeem, D., Dehouck, M. P. & Ferreira, L. Stem cell-based human blood–brain barrier models for drug discovery and delivery. Trends Biotechnol. 34, 382–393 (2016).
pubmed: 26838094 doi: 10.1016/j.tibtech.2016.01.001
Couch, J. A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood–brain barrier. Sci. Transl. Med. 5, 1–12 (2013).
doi: 10.1126/scitranslmed.3005338
Ohshima-Hosoyama, S. et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS ONE 7, e39036 (2012).
pubmed: 22745701 pmcid: 3380056 doi: 10.1371/journal.pone.0039036
Bondy, C., Werner, H., Roberts, C. T. & LeRoith, D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46, 909–923 (1992).
pubmed: 1311816 doi: 10.1016/0306-4522(92)90193-6
Werner, H. & LeRoith, D. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur. Neuropsychopharmacol. 24, 1947–1953 (2014).
pubmed: 24529663 doi: 10.1016/j.euroneuro.2014.01.020
Ribecco-Lutkiewicz, M. et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci. Rep. 8, 1873 (2018).
pubmed: 29382846 pmcid: 5789839 doi: 10.1038/s41598-018-19522-8
Kavran, J.M. et al. How IGF-1 activates its receptor. Elife 3 (2014).
Li, J., Choi, E., Yu, H. & Bai, X. C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat. Commun. 10, 4567 (2019).
pubmed: 31594955 pmcid: 6783537 doi: 10.1038/s41467-019-12564-0
Zhang, X. et al. Visualization of ligand-bound ectodomain assembly in the full-length human IGF-1 receptor by Cryo-em single-particle analysis. Structure 28, 555–561 (2020).
pubmed: 32275863 doi: 10.1016/j.str.2020.03.007
Surinya, K. H. et al. An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors. J. Biol. Chem. 283, 5355–5363 (2008).
pubmed: 18056713 doi: 10.1074/jbc.M707054200
Christoffersen, C. T. et al. Negative cooperativity in the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor. Endocrinology 135, 472–475 (1994).
pubmed: 8013387 doi: 10.1210/endo.135.1.8013387
Stanimirovic, D., Kemmerich, K., Haqqani, A., Sulea, T., Arbabi-Ghahroudi, M., Massie, B., and Gilbert, R. Insulin-like growth factor 1 receptor -specific antibodies and uses thereof (United States, 2017, US20170015748A1).
Calzone, F. J. et al. Epitope-specific mechanisms of IGF1R inhibition by ganitumab. PLoS ONE 8, e55135 (2013).
pubmed: 23383308 pmcid: 3562316 doi: 10.1371/journal.pone.0055135
Doern, A. et al. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo. J. Biol. Chem. 284, 10254–10267 (2009).
pubmed: 19211557 pmcid: 2665079 doi: 10.1074/jbc.M809709200
Soos, M. A. et al. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding, and biological activity. J. Biol. Chem. 267, 12955–12963 (1992).
pubmed: 1377676 doi: 10.1016/S0021-9258(18)42367-8
Keyhanfar, M., Booker, G. W., Whittaker, J., Wallace, J. C. & Forbes, B. E. Precise mapping of an IGF-I-binding site on the IGF-1R. Biochem. J. 401, 269–277 (2007).
pubmed: 16981855 doi: 10.1042/BJ20060890
Kelly, G. M., Buckley, D. A., Kiely, P. A., Adams, D. R. & O’Connor, R. Serine phosphorylation of the insulin-like growth factor I (IGF-1) receptor C-terminal tail restrains kinase activity and cell growth. J. Biol. Chem. 287, 28180–28194 (2012).
pubmed: 22685298 pmcid: 3431707 doi: 10.1074/jbc.M112.385757
Brown, K. A. & Wilson, D. J. Bottom-up hydrogen deuterium exchange mass spectrometry: data analysis and interpretation. Analyst 142, 2874–2886 (2017).
pubmed: 28702519 doi: 10.1039/C7AN00662D
Zhu, S. et al. Hydrogen-deuterium exchange epitope mapping reveals distinct neutralizing mechanisms for two monoclonal antibodies against diphtheria toxin. Biochemistry 58, 646–656 (2019).
pubmed: 30560647 doi: 10.1021/acs.biochem.8b01123
Puchades, C. et al. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Sci Rep 9, 4735 (2019).
pubmed: 30894620 pmcid: 6427009 doi: 10.1038/s41598-019-41179-0
Qiang, G. et al. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 63, 1394–1409 (2014).
pubmed: 24651808 pmcid: 3964510 doi: 10.2337/db13-0334
Houde, D. & Demarest, S. J. Fine details of IGF-1R activation, inhibition, and asymmetry determined by associated hydrogen/deuterium-exchange and peptide mass mapping. Structure 19, 890–900 (2011).
pubmed: 21645859 doi: 10.1016/j.str.2011.03.014
Xu, Y. et al. How ligand binds to the type 1 insulin-like growth factor receptor. Nat. Commun. 9, 821 (2018).
pubmed: 29483580 pmcid: 5826941 doi: 10.1038/s41467-018-03219-7
Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005).
pubmed: 16341750 doi: 10.1007/s10858-005-4425-x
Menting, J. G. et al. Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like growth factor hybrid receptors. Structure 23, 1271–1282 (2015).
pubmed: 26027733 doi: 10.1016/j.str.2015.04.016
Ni, F. Recent developments in transferred NOE methods. Prog. Nucl. Magn. Reson. Spectrosc. 26, 517–606 (1994).
doi: 10.1016/0079-6565(94)90000-0
Nilvebrant, J. & Rockberg, J. An introduction to epitope mapping. Methods Mol. Biol. 1785, 1–10 (2018).
pubmed: 29714008 doi: 10.1007/978-1-4939-7841-0_1
Whittaker, J. et al. Alanine scanning mutagenesis of a type 1 insulin-like growth factor receptor ligand binding site. J. Biol. Chem. 276, 43980–43986 (2001).
pubmed: 11500492 doi: 10.1074/jbc.M102863200
Slysz, G. W., Percy, A. J. & Schriemer, D. C. Restraining expansion of the peak envelope in H/D exchange-MS and its application in detecting perturbations of protein structure/dynamics. Anal. Chem. 80, 7004–7011 (2008).
pubmed: 18707134 doi: 10.1021/ac800897q
Rey, M. et al. Mass spec studio for integrative structural biology. Structure 22, 1538–1548 (2014).
pubmed: 25242457 pmcid: 4391204 doi: 10.1016/j.str.2014.08.013
Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Cavanagh, J., Fairbrother, W. J., Palmer, A. G. III. & Skelton, N. J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, Cambridge, 1996).
Worley, B. Subrandom methods for multidimensional nonuniform sampling. J. Magn. Reson. 269, 128–137 (2016).
pubmed: 27301071 pmcid: 4958578 doi: 10.1016/j.jmr.2016.06.007
Worley, B. Convex accelerated maximum entropy reconstruction. J. Magn. Reson. 265, 90–98 (2016).
pubmed: 26894476 pmcid: 4818692 doi: 10.1016/j.jmr.2016.02.003
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
pubmed: 8520220 doi: 10.1007/BF00197809
Johnson, B. A. & Blevins, R. A. NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).
pubmed: 22911360 doi: 10.1007/BF00404272
Geysen, H. M., Rodda, S. J., Mason, T. J., Tribbick, G. & Schoofs, P. G. Strategies for epitope analysis using peptide synthesis. J. Immunol. Methods 102, 259–274 (1987).
pubmed: 2443575 doi: 10.1016/0022-1759(87)90085-8
Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).
pubmed: 31249422 pmcid: 6614034 doi: 10.1038/s41592-019-0459-y

Auteurs

Joey Sheff (J)

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.

Ping Wang (P)

Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.

Ping Xu (P)

Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.

Melanie Arbour (M)

Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.

Luke Masson (L)

Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.

Henk van Faassen (H)

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.

Greg Hussack (G)

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.

Kristin Kemmerich (K)

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.

Eric Brunette (E)

Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.

Danica Stanimirovic (D)

Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.

Jennifer J Hill (JJ)

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.

John Kelly (J)

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.

Feng Ni (F)

Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada. Feng.Ni@cnrc-nrc.gc.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH