Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues.
Artificial Intelligence
functional genomics
machine learning
microarray
mitochondria
Journal
Aging
ISSN: 1945-4589
Titre abrégé: Aging (Albany NY)
Pays: United States
ID NLM: 101508617
Informations de publication
Date de publication:
11 02 2021
11 02 2021
Historique:
received:
01
04
2020
accepted:
29
10
2020
entrez:
21
2
2021
pubmed:
22
2
2021
medline:
20
7
2021
Statut:
ppublish
Résumé
By combining transcriptomic data with other data sources, inferences can be made about functional changes during ageing. Thus, we conducted a meta-analysis on 127 publicly available microarray and RNA-Seq datasets from mice, rats and humans, identifying a transcriptomic signature of ageing across species and tissues. Analyses on subsets of these datasets produced transcriptomic signatures of ageing for brain, heart and muscle. We then applied enrichment analysis and machine learning to functionally describe these signatures, revealing overexpression of immune and stress response genes and underexpression of metabolic and developmental genes. Further analyses revealed little overlap between genes differentially expressed with age in different tissues, despite ageing differentially expressed genes typically being widely expressed across tissues. Additionally we show that the ageing gene expression signatures (particularly the overexpressed signatures) of the whole meta-analysis, brain and muscle tend to include genes that are central in protein-protein interaction networks. We also show that genes underexpressed with age in the brain are highly central in a co-expression network, suggesting that underexpression of these genes may have broad phenotypic consequences. In sum, we show numerous functional similarities between the ageing transcriptomes of these important tissues, along with unique network properties of genes differentially expressed with age in both a protein-protein interaction and co-expression networks.
Identifiants
pubmed: 33611312
pii: 202648
doi: 10.18632/aging.202648
pmc: PMC7906136
doi:
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3313-3341Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R014949/1
Pays : United Kingdom
Références
Nature. 2002 May 23;417(6887):399-403
pubmed: 12000970
Trends Immunol. 2014 May;35(5):219-29
pubmed: 24746883
J Mol Biol. 2017 Aug 4;429(16):2427-2437
pubmed: 28684248
J Physiol. 2016 Apr 15;594(8):2043-60
pubmed: 26607973
Parkinsons Dis. 2019 Jul 4;2019:7975407
pubmed: 31354934
Nat Commun. 2015 Oct 22;6:8570
pubmed: 26490707
Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5
pubmed: 23193258
Nat Genet. 2013 Jun;45(6):580-5
pubmed: 23715323
PLoS One. 2011;6(11):e26952
pubmed: 22096509
Nature. 2001 May 3;411(6833):41-2
pubmed: 11333967
Mech Ageing Dev. 2006 Dec;127(12):905-16
pubmed: 17092546
Aging Cell. 2015 Feb;14(1):130-8
pubmed: 25424641
Hum Mol Genet. 2007 Dec 15;16(24):3059-70
pubmed: 17872905
PLoS Genet. 2007 Nov;3(11):e201
pubmed: 18081424
Neurobiol Aging. 2005 Oct;26(9):1261-70; discussion 1275-8
pubmed: 16005549
Med Sci Monit Basic Res. 2014 Aug 23;20:138-42
pubmed: 25149683
PLoS Biol. 2018 Sep 18;16(9):e2006643
pubmed: 30226837
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5531-4
pubmed: 17947148
Bioinformatics. 2018 Jul 15;34(14):2449-2456
pubmed: 29462247
J Nutr. 2001 Mar;131(3):918S-923S
pubmed: 11238786
Bioinformatics. 2006 Jul 1;22(13):1600-7
pubmed: 16606683
Nat Rev Mol Cell Biol. 2016 May;17(5):280-92
pubmed: 27033256
Sci Rep. 2017 Nov 10;7(1):15329
pubmed: 29127390
J Invest Dermatol. 2003 Apr;120(4):548-54
pubmed: 12648216
Aging (Albany NY). 2020 Aug 15;12(15):15603-15623
pubmed: 32805724
Biomed Res Int. 2015;2015:318586
pubmed: 25767806
Sci Rep. 2015 Oct 19;5:15145
pubmed: 26477495
Mol Biosyst. 2012 Apr;8(4):1339-49
pubmed: 22327899
Science. 2017 Mar 31;355(6332):1433-1436
pubmed: 28360329
Trends Immunol. 2016 Sep;37(9):608-620
pubmed: 27443914
Aging Cell. 2018 Oct;17(5):e12819
pubmed: 29959820
Bioinformatics. 2005 Mar 1;21(5):650-9
pubmed: 15388519
Nucleic Acids Res. 2019 Jan 8;47(D1):D529-D541
pubmed: 30476227
Nucleic Acids Res. 2018 Jan 4;46(D1):D1083-D1090
pubmed: 29121237
Cell Immunol. 2007 Jan;245(1):42-61
pubmed: 17499630
Bioinformatics. 2009 Apr 1;25(7):875-81
pubmed: 19189975
Pharmacol Rev. 2012 Jan;64(1):88-101
pubmed: 22090473
Age (Dordr). 2012 Jun;34(3):693-704
pubmed: 21643761
Trends Ecol Evol. 2000 Dec 1;15(12):496-503
pubmed: 11114436
Trends Genet. 2013 Oct;29(10):559-60
pubmed: 23998809
Ann N Y Acad Sci. 2000 Jun;908:244-54
pubmed: 10911963
Genome Biol. 2013;14(10):R115
pubmed: 24138928
Am J Physiol Regul Integr Comp Physiol. 2002 Feb;282(2):R519-27
pubmed: 11792662
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4441-6
pubmed: 18332434
Genome Biol. 2020 Apr 7;21(1):91
pubmed: 32264951
Cell Syst. 2017 Jan 25;4(1):60-72.e4
pubmed: 27989508