Sleep-wake cycle disturbances and NeuN-altered expression in adult rats after cannabidiol treatments during adolescence.
Cannabinoids
Sleep
Suprachiasmatic nucleus
Δ9-Tetrahydrocannabinol
Journal
Psychopharmacology
ISSN: 1432-2072
Titre abrégé: Psychopharmacology (Berl)
Pays: Germany
ID NLM: 7608025
Informations de publication
Date de publication:
Jun 2021
Jun 2021
Historique:
received:
18
09
2020
accepted:
20
01
2021
pubmed:
27
2
2021
medline:
2
6
2021
entrez:
26
2
2021
Statut:
ppublish
Résumé
The medical uses of cannabidiol (CBD), a constituent of the Cannabis sativa, have accelerated the legal and social acceptance for CBD-based medications but has also given the momentum for questioning whether the long-term use of CBD during the early years of life may induce adverse neurobiological effects in adulthood, including sleep disturbances. Given the critical window for neuroplasticity and neuro-functional changes that occur during stages of adolescence, we hypothesized that CBD might influence the sleep-wake cycle in adult rats after their exposure to CBD during the adolescence. Here, we investigated the effects upon behavior and neural activity in adulthood after long-term administrations of CBD in juvenile rats. We pre-treated juvenile rats with CBD (5 or 30 mg/Kg, daily) from post-natal day (PND) 30 and during 2 weeks. Following the treatments, the sleep-wake cycle and NeuN expression was analyzed at PND 80. We found that systemic injections of CBD (5 or 30 mg/Kg, i.p.) given to adolescent rats (post-natal day 30) for 14 days increased in adulthood the wakefulness and decreased rapid eye movement sleep during the lights-on period whereas across the lights-off period, wakefulness was diminished and slow wave sleep was enhanced. In addition, we found that adult animals that received CBD during the adolescence displayed disruptions in sleep rebound period after total sleep deprivation. Finally, we determined how the chronic administrations of CBD during the adolescence affected in the adulthood the NeuN expression in the suprachiasmatic nucleus, a sleep-related brain region. Our findings are relevant for interpreting results of adult rats that were chronically exposed to CBD during the adolescence and provide new insights into how CBD may impact the sleep-wake cycle and neuronal activity during developmental stages.
Identifiants
pubmed: 33635384
doi: 10.1007/s00213-021-05769-z
pii: 10.1007/s00213-021-05769-z
doi:
Substances chimiques
Cannabidiol
19GBJ60SN5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1437-1447Subventions
Organisme : University of California Institute for Mexico and the United States
ID : CN-17-19
Références
Ambriz-Tututi M, Palomero-Rivero M, Ramirez-López F, Millán-Aldaco D, Drucker-Colín R (2013) Role of glutamate receptors in the dorsal reticular nucleus in formalin-induced secondary allodynia. Eur J Neurosci 38:3008–3017. https://doi.org/10.1111/ejn.12302
doi: 10.1111/ejn.12302
pubmed: 23869620
Anderson CH (1891) Nucleolus: changes at puberty in neurons of the suprachiasmatic nucleus and the preoptic area. Exp Neurol 74:780–786. https://doi.org/10.1016/0014-4886(81)90251-x
doi: 10.1016/0014-4886(81)90251-x
Babson KA, Sottile J, Morabito D (2017) Cannabis, cannabinoids, and sleep: a review of the literature. Curr Psychiatry Rep 19:23. https://doi.org/10.1007/s11920-017-0775-9
doi: 10.1007/s11920-017-0775-9
pubmed: 28349316
Blanco E, Galeano P, Holubiec MI, Romero JI, Logica T, Rivera P, Pavón FJ, Suarez J, Capani F, Rodríguez de Fonseca F (2015) Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats. Front Neuroanat 9:141. https://doi.org/10.3389/fnana.2015.00141
doi: 10.3389/fnana.2015.00141
pubmed: 26578900
pmcid: 4630311
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP (2019) The neuropsychopharmacology of cannabis: a review of human imaging studies. Pharmacol Ther 195:132–161. https://doi.org/10.1016/j.pharmthera.2018.10.006
doi: 10.1016/j.pharmthera.2018.10.006
pubmed: 30347211
pmcid: 6416743
Bolton JL, Molet J, Ivy A, Baram TZ (2017) New insights into early-life stress and behavioral outcomes. Curr Opin Behav Sci 14:133–139. https://doi.org/10.1016/j.cobeha.2016.12.012
doi: 10.1016/j.cobeha.2016.12.012
pubmed: 28413813
pmcid: 5389892
Borbély AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25:131–143. https://doi.org/10.1111/jsr.12371
doi: 10.1111/jsr.12371
pubmed: 26762182
Buijs RM, Guzmán Ruiz MA, Méndez Hernández R, Rodríguez Cortés B (2019) The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci 218:43–50. https://doi.org/10.1016/j.autneu.2019.02.001
doi: 10.1016/j.autneu.2019.02.001
pubmed: 30890347
Carmona-Alcocer V, Rohr KE, Joye DAM, Evans JA (2020) Circuit development in the master clock network of mammals. Eur J Neurosci 51:82–108. https://doi.org/10.1111/ejn.14259
doi: 10.1111/ejn.14259
pubmed: 30402923
Curie T, Maret S, Emmenegger Y, Franken P (2015) In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. Sleep 38:1381–1394. https://doi.org/10.5665/sleep.4974
doi: 10.5665/sleep.4974
pubmed: 25581923
pmcid: 4531406
Deboer T (2018) Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiol Sleep Circadian Rhythms 5:68–77. https://doi.org/10.1016/j.nbscr.2018.02.003
doi: 10.1016/j.nbscr.2018.02.003
pubmed: 31236513
pmcid: 6584681
Deboer T, Détári L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262. https://doi.org/10.1093/sleep/30.3.257
doi: 10.1093/sleep/30.3.257
pubmed: 17425221
de-la-Cruz M, Millán-Aldaco D, Soriano-Nava DM, Drucker-Colín R, Murillo-Rodríguez E (2018) The artificial sweetener Splenda intake promotes changes in expression of c-Fos and NeuN in hypothalamus and hippocampus of rats. Brain Res 1700:181–189. https://doi.org/10.1016/j.brainres.2018.09.006
doi: 10.1016/j.brainres.2018.09.006
pubmed: 30201258
Duan W, Zhang Y-P, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q (2016) Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol 53:1637–1647. https://doi.org/10.1007/s12035-015-9122-5
doi: 10.1007/s12035-015-9122-5
pubmed: 25680637
Eban-Rothschild A, Appelbaum L, de Lecea L (2018) Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacol 43:937–952. https://doi.org/10.1038/npp.2017.294
doi: 10.1038/npp.2017.294
Fogaça MV, Campos AC, Coelho LD, Duman RS, Guimarães FS (2018) The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropharmacol135: 22–33. https://doi.org/10.1016/j.neuropharm.2018.03.001
Geoghegan D, Carter DA (2008) A novel site of adult doublecortin expression: neuropeptide neurons within the suprachiasmatic nucleus circadian clock. BMC Neurosci 9:2. https://doi.org/10.1186/1471-2202-9-2
doi: 10.1186/1471-2202-9-2
pubmed: 18177494
pmcid: 2253543
Gomes FV, Llorente R, Del Bel A, Viveros M-P, López-Gallardo M, Guimarães FS (2015) Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res 164:155–163. https://doi.org/10.1016/j.schres.2015.01.015
doi: 10.1016/j.schres.2015.01.015
pubmed: 25680767
Goddings AL, Beltz A, Peper JS, Crone EA, Braams BR (2019) Understanding the role of puberty in structural and functional development of the adolescent brain. J Res Adolesc 29:32–53. https://doi.org/10.1111/jora.12408
doi: 10.1111/jora.12408
pubmed: 30869842
Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Nat 7:42–47
doi: 10.32607/20758251-2015-7-2-42-47
Hastings MH, Maywood ES, Brancaccio M (2019) The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biol (Basel) 8:13. https://doi.org/10.3390/biology8010013
doi: 10.3390/biology8010013
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast B, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA (2020) Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 5:e131487. https://doi.org/10.1172/jci.insight.131487
doi: 10.1172/jci.insight.131487
pmcid: 7030790
Herting MM, Kim R, Uban KA, Kan E, Binley A, Sowell ER (2017) Longitudinal changes in pubertal maturation and white matter microstructure. Psychoneuroendocrinol 81:70–79. https://doi.org/10.1016/j.psyneuen.2017.03.017
doi: 10.1016/j.psyneuen.2017.03.017
Herting MM, Sowell ER (2017) Puberty and structural brain development in humans. Front Neuroendocrinol 44:122–137. https://doi.org/10.1016/j.yfrne.2016.12.003
doi: 10.1016/j.yfrne.2016.12.003
pubmed: 28007528
Ibeas Bih C, Chen T, Nunn AVW, Bazelot M, Dallas M, Whalley BJ (2015) Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics 12:699–730. https://doi.org/10.1007/s13311-015-0377-3
doi: 10.1007/s13311-015-0377-3
pubmed: 26264914
pmcid: 4604182
Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284:31052–31061. https://doi.org/10.1074/jbc.M109.052969
doi: 10.1074/jbc.M109.052969
pubmed: 19713214
pmcid: 2781505
Luján MÁ, Castro-Zavala A, Alegre-Zurano L, Valverde O (2018) Repeated cannabidiol treatment reduces cocaine intake and modulates neural proliferation and CB1R expression in the mouse hippocampus. Neuropharmacol 143:163–175. https://doi.org/10.1016/j.neuropharm.2018.09.043
doi: 10.1016/j.neuropharm.2018.09.043
Luppi PH, Fort P (2019) Neuroanatomical and neurochemical bases of vigilance states. Handb Exp Pharmacol 253:35–58. https://doi.org/10.1007/164_2017_84
doi: 10.1007/164_2017_84
pubmed: 29476336
Macías-Triana L, Romero-Cordero K, Tatum-Kuri A, Vera-Barrón A, Millán-Aldaco D, Arankowsky-Sandoval G, Piomelli D, Murillo-Rodríguez E (2020) Exposure to the cannabinoid agonist WIN 55, 212-2 in adolescent rats causes sleep alterations that persist until adulthood. Eur J Pharmacol 874:172911. https://doi.org/10.1016/j.ejphar.2020.172911
doi: 10.1016/j.ejphar.2020.172911
pubmed: 32045604
Mijangos-Moreno S, Poot-Aké A, Arankowsky-Sandoval G, Murillo-Rodríguez E (2014) Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats. Neurosci Res 84:60–63. https://doi.org/10.1016/j.neures.2014.04.006
doi: 10.1016/j.neures.2014.04.006
pubmed: 24800644
Murillo-Rodríguez E, Arankowsky-Sandoval G, Rocha NB, Peniche-Amante R, Veras AB, Machado S, Budde H (2018) Systemic injections of cannabidiol enhance acetylcholine levels from basal forebrain in rats. Neurochem Res 43:1511–1518. https://doi.org/10.1007/s11064-018-2565-0
doi: 10.1007/s11064-018-2565-0
pubmed: 29876791
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G (2017) Role of N-arachidonoyl-serotonin (AA-5-HT) in sleep-wake cycle architecture, sleep homeostasis, and neurotransmitters regulation. Front Mol Neurosci 10:152. https://doi.org/10.3389/fnmol.2017.00152
doi: 10.3389/fnmol.2017.00152
pubmed: 28611585
pmcid: 5447686
Murillo-Rodríguez E, Machado S, Rocha NB, Budde H, Yuan TF, Arias-Carrión O (2016) Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neurosci 339:433–449. https://doi.org/10.1016/j.neuroscience.2016.10.011
doi: 10.1016/j.neuroscience.2016.10.011
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R (2006) Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. FEBS Lett 580:4337–4345. https://doi.org/10.1016/j.febslet.2006.04.102
doi: 10.1016/j.febslet.2006.04.102
pubmed: 16844117
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R (2008) The nonpsychoactive cannabis constituent cannabidiol is a wake-inducing agent. Behav Neurosci 122:1378–1382. https://doi.org/10.1037/a0013278
doi: 10.1037/a0013278
pubmed: 19045957
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Morales-Lara D, Mechoulam R, Drucker-Colín R (2019b) Cannabidiol partially blocks the excessive sleepiness in hypocretin deficient rats: preliminary data. CNS Neurol Disord Drug Targets 18:705–712. https://doi.org/10.2174/1871527318666191021143300
doi: 10.2174/1871527318666191021143300
pubmed: 31642794
Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Mechoulam R, Drucker-Colín R (2011) Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life Sci 88:504–511. https://doi.org/10.1016/j.lfs.2011.01.013
doi: 10.1016/j.lfs.2011.01.013
pubmed: 21262236
Murillo-Rodríguez E, Sarro-Ramírez A, Sánchez D, Mijangos-Moreno S, Tejeda-Padrón A, Poot-Aké A, Guzmán K, Pacheco-Pantoja E, Arias-Carrión O (2014) Potential effects of cannabidiol as a wake-promoting agent. Curr Neuropharmacol 12:269–272. https://doi.org/10.2174/1570159X11666131204235805
doi: 10.2174/1570159X11666131204235805
pubmed: 24851090
pmcid: 4023456
Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press. San Diego, CA. USA
Schrot RJ, Hubbard JR (2016) Cannabinoids: medical implications. Ann Med 48:128–141. https://doi.org/10.3109/07853890.2016.1145794
doi: 10.3109/07853890.2016.1145794
pubmed: 26912385
Reyes-Ortega P, Ragu-Varman D, Rodríguez VM, Reyes-Haro D (2020) Anorexia induces a microglial associated pro-inflammatory environment and correlates with neurodegeneration in the prefrontal cortex of young female rats. Behav Brain Res 392:112606. https://doi.org/10.1016/j.bbr.2020.112606
doi: 10.1016/j.bbr.2020.112606
pubmed: 32387351
Russo EB (2018) Cannabis therapeutics and the future of neurology. Front Integr Neurosci 12:51. https://doi.org/10.3389/fnint.2018.00051
doi: 10.3389/fnint.2018.00051
pubmed: 30405366
pmcid: 6200872
Saper CB, Fuller PM (2017) Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44:186–192. https://doi.org/10.1016/j.conb.2017.03.021
doi: 10.1016/j.conb.2017.03.021
pubmed: 28577468
pmcid: 5531075
Schwartz WJ, Klerman EB (2019) Circadian neurobiology and the physiologic regulation of sleep and wakefulness. Neurol Clin 37:475–486. https://doi.org/10.1016/j.ncl.2019.03.001
doi: 10.1016/j.ncl.2019.03.001
pubmed: 31256784
pmcid: 6604835
Verrotti A, Castagnino M, Maccarrone M, Fezza F (2016) Plant-derived and endogenous cannabinoids in epilepsy. Clin Drug Investig 36:331–340. https://doi.org/10.1007/s40261-016-0379-x
doi: 10.1007/s40261-016-0379-x
pubmed: 26892745
Vijayakumar N, Op de Macks Z, Shirtcliff EA, Pfeifer JH (2018b) Puberty and the human brain: insights into adolescent development. Neurosci Biobehav Rev 92:417–436. https://doi.org/10.1016/j.neubiorev.2018.06.004
doi: 10.1016/j.neubiorev.2018.06.004
pubmed: 29972766
pmcid: 6234123
Zhang M-Q, Li R, Wang Y-Q, Huang Z-L (2017) Neural plasticity is involved in physiological sleep, depressive sleep disturbances, and antidepressant treatments. Neural Plast 2017:5870735–5870716. https://doi.org/10.1155/2017/5870735
doi: 10.1155/2017/5870735
pubmed: 29181202
pmcid: 5664320