Fetal cardiac dimensions in congenital diaphragmatic hernia: relationship with gestational age and postnatal outcomes.
Journal
Journal of perinatology : official journal of the California Perinatal Association
ISSN: 1476-5543
Titre abrégé: J Perinatol
Pays: United States
ID NLM: 8501884
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
16
11
2020
accepted:
03
02
2021
revised:
15
01
2021
pubmed:
3
3
2021
medline:
21
10
2021
entrez:
2
3
2021
Statut:
ppublish
Résumé
To serially assess fetal cardiac dimensions in congenital diaphragmatic hernia (CDH) and their relation to disease severity. Retrospective analysis of CDH cases and matched controls. Mitral (MVd) and tricuspid (TVd) valve diameters, left (LV) and right (RV) ventricular length and area, Z-scores, were serially assessed at 24-26, 30-32, and 35-37 weeks gestational age (GA). In CDH cases MVd, MVd Z-score, and LV area were significantly reduced at 24-26 and 35-37 weeks GA. TVd, TVd Z-score, and RV area were significantly reduced at 24-26 weeks. RV area Z-score increased with advancing GA. MVd and MVd Z-score were significantly lower at 24-26 weeks GA in CDH who had a combined outcome of death and/or ECMO. LV hypoplasia in CDH is characterized by reduced MVd from 24 weeks GA. MVd, and the ratio of mitral and tricuspid valve diameters at later gestations, may be potential predictors of disease severity.
Identifiants
pubmed: 33649439
doi: 10.1038/s41372-021-00986-y
pii: 10.1038/s41372-021-00986-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1651-1659Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature.
Références
Harting MT, Lally KP. The Congenital Diaphragmatic Hernia Study Group registry update. Semin Fetal Neonatal Med. 2014;19:370–5.
doi: 10.1016/j.siny.2014.09.004
Harting MT. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin Pediatr Surg. 2017;26:147–53.
doi: 10.1053/j.sempedsurg.2017.04.008
Kinsella JP, Ivy DD, Abman SH. Pulmonary vasodilator therapy in congenital diaphragmatic hernia: acute, late, and chronic pulmonary hypertension. Semin Perinatol. 2005;29:123–8.
doi: 10.1053/j.semperi.2005.04.008
Kipfmueller F, Heindel K, Schroeder L, Berg C, Dewald O, Reutter H, et al. Early postnatal echocardiographic assessment of pulmonary blood flow in newborns with congenital diaphragmatic hernia. J Perinat Med. 2018;46:735–43.
doi: 10.1515/jpm-2017-0031
Patel N, Massolo AC, Paria A, Stenhouse EJ, Hunter L, Finlay E, et al. Early postnatal ventricular dysfunction is associated with disease severity in patients with congenital diaphragmatic hernia. J Pediatr. 2018;203:400–7.
doi: 10.1016/j.jpeds.2018.07.062
Patel N, Lally PA, Kipfmueller F, Massolo AC, Luco M, Van Meurs KP, et al. Ventricular dysfunction is a critical determinant of mortality in congenital diaphragmatic hernia. Am J Respir Crit Care Med. 2019;200:1522–30.
doi: 10.1164/rccm.201904-0731OC
Siebert JR, Haas JE, Beckwith JB. Left ventricular hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg. 1984;19:567–71.
doi: 10.1016/S0022-3468(84)80105-0
Kinsella J, Steinhorn R, Mullen M, Hopper R, Keller R, Ivy D, et al. The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J Pediatr. 2018;197:17–22.
doi: 10.1016/j.jpeds.2018.02.040
Putnam LR, Harting MT, Tsao K, Morini F, Yoder BA, Luco M, et al. Congenital diaphragmatic hernia defect size and infant morbidity at discharge. Pediatrics. 2016;138:e20162043.
doi: 10.1542/peds.2016-2043
Alves L, Byrne A, Keller RL, Brook MM, Silverman H, Moon-grady AJ. Left heart structures in human neonates with congenital diaphragmatic hernia and the effect of fetal endoscopic tracheal occlusion. Fetal Diagn Ther. 2014;35:36–43.
doi: 10.1159/000356437
Lee W, Riggs T, Amula V, Tsimis M, Cutler N, Bronsteen R, et al. Fetal echocardiography: Z-score reference ranges for a large patient population. Ultrasound Obstet Gynecol. 2010;35:28–34.
doi: 10.1002/uog.7483
Mardy C, Blumenfeld YJ, Arunamata AA, Girsen AI, Sylvester KG, Halabi S, et al. In fetuses with congenital lung masses, decreased ventricular and atrioventricular valve dimensions are associated with lesion size and clinical outcome. Prenat Diagn. 2020;40:206–15.
doi: 10.1002/pd.5612
Vogel M, McElhinney DB, Marcus E, Morash D, Jennings RW, Tworetzky W. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2010;35:310–7.
doi: 10.1002/uog.7497
Schneider C, McCrindle BW, Carvalho JS, Hornberger LK, McCarthy KP, Daubeney PEF. Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol. 2005;26:599–605.
doi: 10.1002/uog.2597
Jani J, Nicolaides KH, Keller RL, Benachi A, Peralta CFA, Favre R, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol. 2007;30:67–71.
doi: 10.1002/uog.4052
Romiti A, Viggiano M, Conforti A, Valfré L, Ravà L, Ciofi Degli Atti M, et al. Ultrasonographic assessment of mediastinal shift angle (MSA) in isolated left congenital diaphragmatic hernia for the prediction of postnatal survival. J Matern Neonatal Med. 2018;0:1–6.
Byrne FA, Keller RL, Meadows J, Miniati D, Brook MM, Silverman NH, et al. Severe left diaphragmatic hernia limits size of fetal left heart more than does right diaphragmatic hernia. Ultrasound Obstet Gynecol. 2015;46:688–94.
doi: 10.1002/uog.14790
Kailin JA, Dhillon GS, Maskatia SA, Cass DL, Shamshirsaz AA, Mehollin-ray AR, et al. Fetal left-sided cardiac structural dimensions in left-sided congenital diaphragmatic hernia–association with severity and impact on postnatal outcomes. Prenat Diagn. 2017;37:502–9.
doi: 10.1002/pd.5045
Stressig R, Fimmers R, Eising K, Gembruch U, Kohl T. Preferential streaming of the ductus venosus and inferior caval vein towards the right heart is associated with left heart underdevelopment in human fetuses with left-sided diaphragmatic hernia. Heart. 2010;96:1564–8.
doi: 10.1136/hrt.2010.196550
Duy D, Patel N, Harting MT, Lally KP, Lally PA, Buchmiller TL. Early left ventricular dysfunction and severe pulmonary hypertension predict adverse outcomes in ‘low-risk’ congenital diaphragmatic hernia. Pediatr Crit Care Med. 2020;21:637–46.
doi: 10.1097/PCC.0000000000002318
Crawford DC, Wright VM, Drake DP, Allan LD. Fetal diaphragmatic hernia: the value of fetal echocardiography in the prediction of postnatal outcome. BJOG Int J Obstet Gynaecol. 1989;96:705–10.
doi: 10.1111/j.1471-0528.1989.tb03286.x
Yamoto M, Tanaka Y, Fukumoto K, Miyake H, Nakajima H, Koyama M, et al. Cardiac fetal ultrasonographic parameters for predicting outcomes of isolated left-sided congenital diaphragmatic hernia. J Pediatr Surg. 2015;50:2019–24.
doi: 10.1016/j.jpedsurg.2015.08.016
Mandell EW, Kinsella JP. Left ventricular dysfunction and persistent perfusion abnormalities in infants with congenital diaphragmatic hernia. J Pediatr. 2019;219:7–8.
doi: 10.1016/j.jpeds.2019.11.013
Massolo AC, Paria A, Hunter L, Finlay E, Davis CF, Patel N. Ventricular dysfunction, interdependence, and mechanical dispersion in newborn infants with congenital diaphragmatic hernia. Neonatology. 2019;116:68–75.
doi: 10.1159/000499347
Oluyomi-obi T, Kuret V, Puligandla P, Lodha A, Lee-robertson H, Lee K, et al. Antenatal predictors of outcome in prenatally diagnosed congenital diaphragmatic hernia (CDH). J Pediatr Surg. 2017;52:881–8.
doi: 10.1016/j.jpedsurg.2016.12.008
Tan J, Silverman NH, Hoffman JIE, Villegas M, Schmidt KG. Cardiac dimensions determined by cross-sectional echocardiography in the normal human fetus from 18 weeks to term. Am J Cardiol. 1992;70:1459–67.
doi: 10.1016/0002-9149(92)90300-N