Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome.


Journal

Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105

Informations de publication

Date de publication:
Aug 2021
Historique:
received: 12 05 2020
accepted: 27 01 2021
revised: 21 01 2021
pubmed: 3 3 2021
medline: 24 12 2021
entrez: 2 3 2021
Statut: ppublish

Résumé

Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.

Identifiants

pubmed: 33651308
doi: 10.1007/s10753-021-01428-9
pii: 10.1007/s10753-021-01428-9
doi:

Substances chimiques

Anti-Inflammatory Agents 0
Antioxidants 0
Inflammasomes 0
Inflammation Mediators 0
NLR Family, Pyrin Domain-Containing 3 Protein 0
Melatonin JL5DK93RCL

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1207-1222

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

Références

Samarghandian, S., Samini, F., Azimi-Nezhad, M. and Farkhondeh, T. 2017. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neuroscience Letters 659: 26–32.
Samarghandian, S., Azimi‐Nezhad, M., Afshari, R., Farkhondeh, T. and Karimnezhad, F. 2015. Effects of buprenorphine on balance of oxidant/antioxidant system in the different ages of male rat liver. Journal of Biochemical and Molecular Toxicology 29(6): 249–253.
Samarghandian, S., Borji, A., Afshari, R., Delkhosh, M.B. and Gholami, A. 2013. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicology Mechanisms and Methods 23(6): 432–436.
Haque, M.E., Akther, M., Jakaria, M., Kim, I.S., Azam, S. and Choi, D.K. 2020. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease. Movement Disorders 35(1): 20–33.
Farkhondeh, T., Samarghandian, S., Azimin-Nezhad, M. and Samini, F. 2015. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. International Journal of Clinical and Experimental Medicine 8(2): 2465.
Wu, D., Y. Chen, Y. Sun, Q. Gao, H. Li, Z. Yang, et al. 2019. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review. Inflammation.
Wu, X., H. Ji, Y. Wang, C. Gu, W. Gu, L. Hu, et al. 2019. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 Axis. Oxidative Medicine and Cellular Longevity 2019.
Wei, J., H. Wang, H. Wang, B. Wang, L. Meng, Y. Xin, and X. Jiang. 2019. The role of NLRP3 inflammasome activation in radiation damage. Biomedicine & Pharmacotherapy 118: 109217.
doi: 10.1016/j.biopha.2019.109217
Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140 (6): 805–820.
doi: 10.1016/j.cell.2010.01.022
Akira, S. 2006. TLR Signaling. In From innate immunity to immunological memory, ed. B. Pulendran and R. Ahmed, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg.
Cowie, A.M., B.N. Dittel, and C.L. Stucky. 2019. A novel sex-dependent target for the treatment of postoperative pain: the NLRP3 inflammasome. Frontiers in Neurology 10 (622).
Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. International Journal of Molecular Sciences 20 (13): 3328.
pmcid: 6651423 doi: 10.3390/ijms20133328
Lamkanfi, M., and Vishva M. Dixit. 2014. Mechanisms and functions of inflammasomes. Cell 157 (5): 1013–1022.
pubmed: 24855941 pmcid: 24855941 doi: 10.1016/j.cell.2014.04.007
Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481 (7381): 278–286.
pubmed: 22258606 doi: 10.1038/nature10759 pmcid: 22258606
Lee, S.-H., C.-H. Kwak, S.-K. Lee, S.-H. Ha, J. Park, T.-W. Chung, K.T. Ha, S.J. Suh, Y.C. Chang, H.W. Chang, Y.C. Lee, B.S. Kang, J. Magae, and C.H. Kim. 2016. Anti-inflammatory effect of ascochlorin in LPS-stimulated raw 264.7 macrophage cells is accompanied with the down-regulation of iNOS, COX-2 and proinflammatory cytokines through NF-κB, ERK1/2, and p38 signaling pathway. Journal of Cellular Biochemistry 117 (4): 978–987.
pubmed: 26399466 doi: 10.1002/jcb.25383 pmcid: 26399466
Swanson, K.V., M. Deng, and J.P.-Y. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19 (8): 477–489.
pubmed: 31036962 pmcid: 7807242 doi: 10.1038/s41577-019-0165-0
Samarghandian, S., F. Samini, M. Azimi-Nezhad, and T. Farkhondeh. 2017. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neuroscience Letters 659: 26–32.
pubmed: 28866053 doi: 10.1016/j.neulet.2017.08.065 pmcid: 28866053
Samarghandian, S., M. Azimi-Nezhad, A. Borji, M. Samini, and T. Farkhondeh. 2017. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats. BMC Complementary and Alternative Medicine 17 (1): 1–7.
doi: 10.1186/s12906-017-1753-9
Juliana, C., T. Fernandes-Alnemri, S. Kang, A. Farias, F. Qin, and E.S. Alnemri. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. The Journal of Biological Chemistry 287 (43): 36617–36622.
pubmed: 22948162 pmcid: 3476327 doi: 10.1074/jbc.M112.407130
Ding, S., S. Xu, Y. Ma, G. Liu, H. Jang, and J. Fang. 2019. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules 9 (12): 850.
pmcid: 6995523 doi: 10.3390/biom9120850
Abderrazak, A., T. Syrovets, D. Couchie, K. El Hadri, B. Friguet, T. Simmet, et al. 2015. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biology 4: 296–307.
pubmed: 25625584 pmcid: 4315937 doi: 10.1016/j.redox.2015.01.008
Amores-Iniesta, J., M. Barberà-Cremades, C.M. Martínez, J.A. Pons, B. Revilla-Nuin, L. Martínez-Alarcón, F. di Virgilio, P. Parrilla, A. Baroja-Mazo, and P. Pelegrín. 2017. extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Reports 21 (12): 3414–3426.
pubmed: 29262323 doi: 10.1016/j.celrep.2017.11.079 pmcid: 29262323
da Costa, L.S., A. Outlioua, A. Anginot, K. Akarid, and D. Arnoult. 2019. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell Death & Disease 10 (5): 346.
doi: 10.1038/s41419-019-1579-0
Mariathasan, S., D.S. Weiss, K. Newton, J. McBride, K. O'Rourke, M. Roose-Girma, W.P. Lee, Y. Weinrauch, D.M. Monack, and V.M. Dixit. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440 (7081): 228–232.
pubmed: 16407890 doi: 10.1038/nature04515 pmcid: 16407890
Arioz, B.I., B. Tastan, E. Tarakcioglu, K.U. Tufekci, M. Olcum, N. Ersoy, A. Bagriyanik, K. Genc, and S. Genc. 2019. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Frontiers in Immunology 10: 1511.
pubmed: 31327964 pmcid: 6615259 doi: 10.3389/fimmu.2019.01511
de Boer, I.H., S. Bangalore, A. Benetos, A.M. Davis, E.D. Michos, P. Muntner, P. Rossing, S. Zoungas, and G. Bakris. 2017. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care 40 (9): 1273–1284.
pubmed: 28830958 doi: 10.2337/dci17-0026 pmcid: 28830958
Cooper, S.A., A. Whaley-Connell, J. Habibi, Y. Wei, G. Lastra, C. Manrique, S. Stas, and J.R. Sowers. 2007. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. American Journal of Physiology. Heart and Circulatory Physiology 293 (4): H2009–H2023.
pubmed: 17586614 doi: 10.1152/ajpheart.00522.2007 pmcid: 17586614
Forbes, J.M., and M.E. Cooper. 2013. Mechanisms of diabetic complications. Physiological Reviews 93 (1): 137–188.
pubmed: 23303908 doi: 10.1152/physrev.00045.2011 pmcid: 23303908
Beckman, J.A., F. Paneni, F. Cosentino, and M.A. Creager. 2013. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. European Heart Journal 34 (31): 2444–2452.
pubmed: 23625211 doi: 10.1093/eurheartj/eht142 pmcid: 23625211
Ferreira, N.S., T. Bruder-Nascimento, C.A. Pereira, C.Z. Zanotto, D.S. Prado, J.F. Silva, et al. 2019. NLRP3 inflammasome and mineralocorticoid receptors are associated with vascular dysfunction in type 2 diabetes mellitus. Cells 8 (12).
Zhang, Y.Z., Y.L. Zhang, Q. Huang, C. Huang, Z.L. Jiang, F. Cai, and J.F. Shen. 2019. AdipoRon alleviates free fatty acid-induced myocardial cell injury via suppressing Nlrp3 inflammasome activation. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy 12: 2165–2179.
doi: 10.2147/DMSO.S221841
Hu, R., M.Q. Wang, S.H. Ni, M. Wang, L.Y. Liu, H.Y. You, X.H. Wu, Y.J. Wang, L. Lu, and L.B. Wei. 2020. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-kappaB/NLRP3 signaling pathway in AGEs-induced HUVECs. European Journal of Pharmacology 867: 172797.
pubmed: 31747547 doi: 10.1016/j.ejphar.2019.172797
Leng, W., M. Wu, H. Pan, X. Lei, L. Chen, Q. Wu, X. Ouyang, and Z. Liang. 2019. The SGLT2 inhibitor dapagliflozin attenuates the activity of ROS-NLRP3 inflammasome axis in steatohepatitis with diabetes mellitus. Annals of Translational Medicine 7 (18): 429.
pubmed: 31700865 pmcid: 6803170 doi: 10.21037/atm.2019.09.03
Li, D., G. Shi, J. Wang, D. Zhang, Y. Pan, H. Dou, and Y. Hou. 2019. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Research & Therapy 21 (1): 105.
doi: 10.1186/s13075-019-1876-0
Mirhoseini, M., Z. Rezanejad Gatabi, M. Saeedi, K. Morteza-Semnani, F. Talebpour Amiri, H.R. Kelidari, and A.A. Karimpour Malekshah. 2019. Protective effects of melatonin solid lipid nanoparticles on testis histology after testicular trauma in rats. Research in Pharmaceutical Sciences 14 (3): 201–208.
pubmed: 31160897 pmcid: 6540923 doi: 10.4103/1735-5362.258486
Wang, X., H. Huang, C. Su, Q. Zhong, and G. Wu. 2019. Cilostazol ameliorates high free fatty acid (FFA)-induced activation of NLRP3 inflammasome in human vascular endothelial cells. Artificial Cells, Nanomedicine, and Biotechnology 47 (1): 3704–3710.
pubmed: 31514535 doi: 10.1080/21691401.2019.1665058
Yang, X., C. Qu, J. Jia, and Y. Zhan. 2019. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology. 224 (6): 786–791.
pubmed: 31477246 doi: 10.1016/j.imbio.2019.08.008
Chen, T.C., C.K. Yen, Y.C. Lu, C.S. Shi, R.Z. Hsieh, S.F. Chang, and C.N. Chen. 2020. The antagonism of 6-shogaol in high-glucose-activated NLRP3 inflammasome and consequent calcification of human artery smooth muscle cells. Cell & Bioscience 10: 5.
doi: 10.1186/s13578-019-0372-1
Sierksma, A., A. Lu, R. Mancuso, N. Fattorelli, N. Thrupp, E. Salta, et al. 2020. Novel Alzheimer risk genes determine the microglia response to amyloid-beta but not to tau pathology. EMBO Molecular Medicine: e10606.
Zhou, Z., M. Muller, P. Kanel, J. Chua, V. Kotagal, D.I. Kaufer, et al. 2019. Apathy rating scores and beta-amyloidopathy in Parkinson disease patients at risk for cognitive decline. Neurology.
Hong, Y., Y. Liu, D. Yu, M. Wang, and Y. Hou. 2019. The neuroprotection of progesterone against Abeta-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. International Immunopharmacology 74: 105669.
pubmed: 31176046 doi: 10.1016/j.intimp.2019.05.054
Luciunaite, A., R.M. McManus, M. Jankunec, I. Racz, C. Dansokho, I. Dalgediene, et al. 2019. Soluble abeta oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. Journal of Neurochemistry: e14945.
La Rosa, F., M. Saresella, I. Marventano, F. Piancone, E. Ripamonti, N. Al-Daghri, et al. 2019. Stavudine reduces NLRP3 inflammasome activation and modulates amyloid-beta autophagy. Journal of Alzheimer’s Disease: JAD. 72 (2): 401–412.
pubmed: 31594217 doi: 10.3233/JAD-181259
Nakanishi, A., N. Kaneko, H. Takeda, T. Sawasaki, S. Morikawa, W. Zhou, M. Kurata, T. Yamamoto, S.M.F. Akbar, T. Zako, and J. Masumoto. 2018. Amyloid beta directly interacts with NLRP3 to initiate inflammasome activation: identification of an intrinsic NLRP3 ligand in a cell-free system. Inflammation and Regeneration 38: 27.
pubmed: 30459926 pmcid: 6231249 doi: 10.1186/s41232-018-0085-6
Ruan, Y., X. Qiu, Y.D. Lv, D. Dong, X.J. Wu, J. Zhu, and X.Y. Zheng. 2019. Kainic acid Induces production and aggregation of amyloid beta-protein and memory deficits by activating inflammasomes in NLRP3- and NF-kappaB-stimulated pathways. Aging 11 (11): 3795–3810.
pubmed: 31182681 pmcid: 6594814 doi: 10.18632/aging.102017
Gourmaud, S., H. Shou, D.J. Irwin, K. Sansalone, L.M. Jacobs, T.H. Lucas, E.D. Marsh, K.A. Davis, F.E. Jensen, and D.M. Talos. 2020. Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain : a Journal of Neurology 143 (1): 191–209.
doi: 10.1093/brain/awz381
Llibre-Guerra, J.J., Y. Li, S.E. Schindler, B.A. Gordon, A.M. Fagan, J.C. Morris, T.L.S. Benzinger, J. Hassenstab, G. Wang, R. Allegri, S.B. Berman, J. Chhatwal, M.R. Farlow, D.M. Holtzman, M. Jucker, J. Levin, J.M. Noble, S. Salloway, P. Schofield, C. Karch, N.C. Fox, C. Xiong, R.J. Bateman, and E. McDade. 2019. Association of longitudinal changes in cerebrospinal fluid total tau and phosphorylated tau 181 and brain atrophy with disease progression in patients with Alzheimer disease. JAMA Network Open 2 (12): e1917126.
pubmed: 31825500 pmcid: 6991202 doi: 10.1001/jamanetworkopen.2019.17126
Ising, C., C. Venegas, S. Zhang, H. Scheiblich, S.V. Schmidt, A. Vieira-Saecker, S. Schwartz, S. Albasset, R.M. McManus, D. Tejera, A. Griep, F. Santarelli, F. Brosseron, S. Opitz, J. Stunden, M. Merten, R. Kayed, D.T. Golenbock, D. Blum, E. Latz, L. Buée, and M.T. Heneka. 2019. NLRP3 inflammasome activation drives tau pathology. Nature. 575 (7784): 669–673.
pubmed: 31748742 pmcid: 7324015 doi: 10.1038/s41586-019-1769-z
Huang, L., S. Duan, H. Shao, A. Zhang, S. Chen, P. Zhang, N. Wang, W. Wang, Y. Wu, J. Wang, H. Liu, W. Yao, Q. Zhang, and F. Feng. 2019. NLRP3 deletion inhibits inflammation-driven mouse lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide. Respiratory Research 20 (1): 20.
pubmed: 30696442 pmcid: 6352353 doi: 10.1186/s12931-019-0983-4
Deora, V., J.D. Lee, E.A. Albornoz, L. McAlary, C.J. Jagaraj, A.A.B. Robertson, J.D. Atkin, M.A. Cooper, K. Schroder, J.J. Yerbury, R. Gordon, and T.M. Woodruff. 2020. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68 (2): 407–421.
pubmed: 31596526 doi: 10.1002/glia.23728 pmcid: 31596526
Zhang, H.S., M.F. Liu, X.Y. Ji, C.R. Jiang, Z.L. Li, and B. OuYang. 2019. Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p. Life Sciences 239: 116935.
pubmed: 31610203 doi: 10.1016/j.lfs.2019.116935 pmcid: 31610203
Yoon, Y.M., H.J. Kim, J.H. Lee, and S.H. Lee. 2019. Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa protein 1L in human mesenchymal stem cells under oxidative stress. International Journal of Molecular Sciences 20 (18).
Wang, X., Y. Bian, R. Zhang, X. Liu, L. Ni, B. Ma, R. Zeng, Z. Zhao, X. Song, and C. Liu. 2019. Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting ROS/NLRP3 axis. Biochemical and Biophysical Research Communications 519 (2): 402–408.
pubmed: 31521245 doi: 10.1016/j.bbrc.2019.09.005 pmcid: 31521245
Duan, S., N. Wang, L. Huang, H. Shao, P. Zhang, W. Wang, Y. Wu, J. Wang, H. Liu, Q. Zhang, and F. Feng. 2019. NLRP3 inflammasome activation involved in LPS and coal tar pitch extract-induced malignant transformation of human bronchial epithelial cells. Environmental Toxicology 34 (5): 585–593.
pubmed: 30698909 doi: 10.1002/tox.22725 pmcid: 30698909
Moossavi, M., N. Parsamanesh, A. Bahrami, S.L. Atkin, and A. Sahebkar. 2018. Role of the NLRP3 inflammasome in cancer. Molecular Cancer 17 (1): 158.
pubmed: 30447690 pmcid: 6240225 doi: 10.1186/s12943-018-0900-3
Yang, Y., P.Y. Liu, W. Bao, S.J. Chen, F.S. Wu, and P.Y. Zhu. 2020. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer 20 (1): 28.
pubmed: 31924176 pmcid: 6954594 doi: 10.1186/s12885-019-6491-6
Teng, J.F., Q.B. Mei, X.G. Zhou, Y. Tang, R. Xiong, W.Q. Qiu, et al. 2020. Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-kappaB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers 12 (1).
Xie, J., B. Zhuan, H. Wang, Y. Wang, X. Wang, Q. Yuan, et al. 2019. Huaier extract suppresses non-small cell lung cancer progression through activating NLRP3-dependent pyroptosis. Anatomical Record (Hoboken, NJ : 2007).
Yao, M., X. Fan, B. Yuan, N. Takagi, S. Liu, X. Han, J. Ren, and J. Liu. 2019. Berberine inhibits NLRP3 inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complementary and Alternative Medicine 19 (1): 216.
pubmed: 31412862 pmcid: 6694465 doi: 10.1186/s12906-019-2615-4
Han, B., S. Li, Y. Lv, D. Yang, J. Li, Q. Yang, P. Wu, Z. Lv, and Z. Zhang. 2019. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1alpha/Nrf2 pathway. Food & Function 10 (9): 5555–5565.
doi: 10.1039/C9FO01152H
Karamitri, A., and R. Jockers. 2019. Melatonin in type 2 diabetes mellitus and obesity. Nature Reviews. Endocrinology 15 (2): 105–125.
pubmed: 30531911 doi: 10.1038/s41574-018-0130-1 pmcid: 30531911
Wu, H.-M., Q.-M. Xie, C.-C. Zhao, J. Xu, X.-Y. Fan, and G.-H. Fei. 2019. Melatonin biosynthesis restored by CpG oligodeoxynucleotides attenuates allergic airway inflammation via regulating NLRP3 inflammasome. Life Sciences 239: 117067.
pubmed: 31738882 doi: 10.1016/j.lfs.2019.117067 pmcid: 31738882
Lerner, A.B., Case, J.D. and Takahashi, Y. 1960. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry 235(7): 1992–1997.
Baltatu, O.C., S. Senar, L.A. Campos, and J. Cipolla-Neto. 2019. Cardioprotective melatonin: translating from proof-of-concept studies to therapeutic use. International Journal of Molecular Sciences 20 (18): 4342.
pmcid: 6770816 doi: 10.3390/ijms20184342
Ren, W., G. Liu, S. Chen, J. Yin, J. Wang, B. Tan, G. Wu, F.W. Bazer, Y. Peng, T. Li, R.J. Reiter, and Y. Yin. 2017. Melatonin signaling in T cells: functions and applications. Journal of Pineal Research 62 (3): e12394.
doi: 10.1111/jpi.12394
Reiter, R.J. 1991. Pineal Melatonin: Cell biology of its synthesis and of its physiological interactions*. Endocrine Reviews 12 (2): 151–180.
pubmed: 1649044 doi: 10.1210/edrv-12-2-151 pmcid: 1649044
Acuña-Castroviejo, D., G. Escames, C. Venegas, M.E. Díaz-Casado, E. Lima-Cabello, L.C. López, S. Rosales-Corral, D.X. Tan, and R.J. Reiter. 2014. Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences 71 (16): 2997–3025.
pubmed: 24554058 doi: 10.1007/s00018-014-1579-2 pmcid: 24554058
Kennaway, D.J. 2017. Are the proposed benefits of melatonin-rich foods too hard to swallow? Critical Reviews in Food Science and Nutrition 57 (5): 958–962.
pubmed: 25975843 doi: 10.1080/10408398.2014.962686 pmcid: 25975843
Lu, K.-H., R.-C. Lin, J.-S. Yang, W.-E. Yang, R.J. Reiter, and S.-F. Yang. 2019. Molecular and cellular mechanisms of melatonin in osteosarcoma. Cells 8 (12): 1618.
pmcid: 6952995 doi: 10.3390/cells8121618
Vijayalaxmi, C.R. Thomas Jr., R.J. Reiter, and T.S. Herman. 2002. Melatonin: from basic research to cancer treatment clinics. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 20 (10): 2575–2601.
doi: 10.1200/JCO.2002.11.004
Tan, D.-x., L.C. Manchester, R.J. Reiter, W. Qi, M.A. Hanes, and N.J. Farley. 1999. High physiological levels of melatonin in the bile of mammals. Life Sciences 65 (23): 2523–2529.
pubmed: 10622237 doi: 10.1016/S0024-3205(99)00519-6 pmcid: 10622237
Wetterberg, L. 1999. Melatonin and clinical application. Reproduction, Nutrition, Development 39 (3): 367–382.
pubmed: 10420439 doi: 10.1051/rnd:19990309 pmcid: 10420439
Luo, G.P., Z. Jian, R.Y. Ma, Z.Z. Cao, Y. Zhu, Y. Zhu, F.Q. Tang, and Y.B. Xiao. 2018. Melatonin alleviates hypoxia-induced cardiac apoptosis through PI3K/Akt pathway. International Journal of Clinical and Experimental Pathology 11 (12): 5840–5849.
pubmed: 31949670 pmcid: 6963099
Shokrzadeh, M., and N. Ghassemi-Barghi. 2018. Melatonin loading chitosan-tripolyphosphate nanoparticles: application in attenuating etoposide-induced genotoxicity in HepG2 cells. Pharmacology 102 (1-2): 74–80.
pubmed: 29940567 doi: 10.1159/000489667 pmcid: 29940567
Romic, M.D., A. Susac, J. Lovric, B. Cetina-Cizmek, J. Filipovic-Grcic, and A. Hafner. 2019. Evaluation of stability and in vitro wound healing potential of melatonin loaded (lipid enriched) chitosan based microspheres. Acta Pharmaceutica (Zagreb, Croatia) 69 (4): 635–648.
doi: 10.2478/acph-2019-0049
Sanchez, A.B., B. Clares, M.J. Rodriguez-Lagunas, M.J. Fabrega, and A.C. Calpena. 2020. Study of melatonin as preventive agent of gastrointestinal damage induced by sodium diclofenac. Cells 9 (1).
Fusco, R., R. Siracusa, R. D'Amico, A.F. Peritore, M. Cordaro, E. Gugliandolo, et al. 2019. Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: an evaluation of pain, oxidative stress, and inflammation. Antioxidants (Basel, Switzerland) 8 (12).
Hajam, Y.A., and S. Rai. 2019. Melatonin and insulin modulates the cellular biochemistry, histoarchitecture and receptor expression during hepatic injury in diabetic rats. Life Sciences 239: 117046.
pubmed: 31730869 doi: 10.1016/j.lfs.2019.117046 pmcid: 31730869
Balmik, A.A., R. Das, A. Dangi, N.V. Gorantla, U.K. Marelli, and S. Chinnathambi. 1864. Melatonin interacts with repeat domain of tau to mediate disaggregation of paired helical filaments. Biochimica et Biophysica Acta, General Subjects 2020 (3): 129467.
doi: 10.1016/j.bbagen.2019.129467
Kandemir, Y.B., V. Tosun, and U. Guntekin. 2019. Melatonin protects against streptozotocin-induced diabetic cardiomyopathy through the mammalian target of rapamycin (mTOR) signaling pathway. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 28 (9): 1171–1177.
doi: 10.17219/acem/103799
Hasan, M., M.A. Marzouk, S. Adhikari, T.D. Wright, B.P. Miller, M.D. Matossian, S. Elliott, M. Wright, M. Alzoubi, B.M. Collins-Burow, M.E. Burow, U. Holzgrabe, D.P. Zlotos, R.E. Stratford, and P.A. Witt-Enderby. 2019. Pharmacological, mechanistic, and pharmacokinetic assessment of novel melatonin-tamoxifen drug conjugates as breast cancer drugs. Molecular Pharmacology 96 (2): 272–296.
pubmed: 31221824 pmcid: 6666385 doi: 10.1124/mol.119.116202
Chen, X., Z. Xi, H. Liang, Y. Sun, Z. Zhong, B. Wang, L. Bian, and Q. Sun. 2019. Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCalpha/Nrf2/HO-1 signaling in vitro. Frontiers in Neuroscience 13: 760.
pubmed: 31404262 pmcid: 6669962 doi: 10.3389/fnins.2019.00760
Dube, K., K. Dhanabalan, R. Salie, M. Blignaut, B. Huisamen, and A. Lochner. 2019. Melatonin has profound effects on mitochondrial dynamics in myocardial ischaemia/reperfusion. Heliyon 5 (10): e02659.
pubmed: 31720456 pmcid: 6838907 doi: 10.1016/j.heliyon.2019.e02659
Khatoon, R., M.Z. Rasheed, M. Rawat, M.M. Alam, H. Tabassum, and S. Parvez. 2019. Effect of melatonin on Abeta42 induced changes in the mitochondrial function related to Alzheimer’s disease in Drosophila melanogaster. Neuroscience Letters 711: 134376.
pubmed: 31325578 doi: 10.1016/j.neulet.2019.134376 pmcid: 31325578
Lu, K., X. Liu, and W. Guo. 2019. Melatonin attenuates inflammation-related venous endothelial cells apoptosis through modulating the MST1-MIEF1 pathway. Journal of Cellular Physiology 234 (12): 23675–23684.
pubmed: 31169304 doi: 10.1002/jcp.28935 pmcid: 31169304
Zhao, Q., W. Wang, and J. Cui. 2019. Melatonin enhances TNF-alpha-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell International 19: 58.
pubmed: 30923460 pmcid: 6419493 doi: 10.1186/s12935-019-0777-2
Fernandez-Gil, B.I., A. Guerra-Librero, Y.Q. Shen, J. Florido, L. Martinez-Ruiz, S. Garcia-Lopez, et al. 2019. Melatonin enhances cisplatin and radiation cytotoxicity in head and neck squamous cell carcinoma by stimulating mitochondrial ROS generation, apoptosis, and autophagy. Oxidative Medicine and Cellular Longevity 2019: 7187128.
pubmed: 30944696 pmcid: 6421819 doi: 10.1155/2019/7187128
Zhang, J., X. Lu, M. Liu, H. Fan, H. Zheng, S. Zhang, et al. 2019. Melatonin inhibits inflammasome-associated activation of endothelium and macrophages attenuating pulmonary arterial hypertension. Cardiovascular Research.
Alvarez-Artime, A., R. Cernuda-Cernuda, N. Francisco Artime, V. Cepas, P. Gonzalez-Menendez, S. Fernadez-Vega, et al. 2020. Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. International Journal of Molecular Sciences 21 (2).
Park, J.H., I. Seo, H.M. Shim, and H. Cho. 2019. Melatonin ameliorates SGLT2 inhibitor-induced diabetic ketoacidosis by inhibiting lipolysis and hepatic ketogenesis in type 2 diabetic mice. Journal of Pineal Research: e12623.
Ge, W.B., L.F. Xiao, H.W. Duan, Z.S. Li, Y.T. Jiang, S.S. Yang, J.J. Hu, Y. Zhang, and X.X. Zhao. 2019. Melatonin protects against lipopolysaccharide-induced epididymitis in sheep epididymal epithelial cells in vitro. Immunology Letters 214: 45–51.
pubmed: 31491433 doi: 10.1016/j.imlet.2019.09.001 pmcid: 31491433
Ma, Y., Q. Zhao, Y. Shao, M.Z. Cao, M. Zhao, and D. Wang. 2019. Melatonin inhibits the inflammation and apoptosis in rats with diabetic retinopathy via MAPK pathway. European Review for Medical and Pharmacological Sciences 23 (3 Suppl): 1–8.
pubmed: 31389568 pmcid: 31389568
Zhang, J., L. Wang, W. Xie, S. Hu, H. Zhou, P. Zhu, and H. Zhu. 2020. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: a new mechanism involving BAP31 upregulation and MAPK-ERK pathway. Journal of Cellular Physiology 235 (3): 2847–2856.
pubmed: 31535369 doi: 10.1002/jcp.29190 pmcid: 31535369
Zhang, Y., F. He, Z. Chen, Q. Su, M. Yan, Q. Zhang, J. Tan, L. Qian, and Y. Han. 2019. Melatonin modulates IL-1beta-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging 11 (22): 10499–10512.
pubmed: 31772145 pmcid: 6914432 doi: 10.18632/aging.102472
Liu, Z.J., Y.Y. Ran, S.Y. Qie, W.J. Gong, F.H. Gao, Z.T. Ding, and J.N. Xi. 2019. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neuroscience & Therapeutics 25 (12): 1353–1362.
doi: 10.1111/cns.13261
Cheikh, M., K. Makhlouf, K. Ghattassi, A. Graja, S. Ferchichi, C. Kallel, et al. 2019. Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes. Chronobiology International: 1–12.
Jin, H., Q. Wang, J. Wu, X. Han, T. Qian, Z. Zhang, J. Wang, X. Pan, A. Wu, and X. Wang. 2019. Baicalein inhibits the IL-1β-induced inflammatory response in nucleus pulposus cells and attenuates disc degeneration in vivo. Inflammation 42 (3): 1032–1044.
pubmed: 30729381 doi: 10.1007/s10753-019-00965-8 pmcid: 30729381
Radovic, M., L. Ristic, D. Krtinic, M. Rancic, V. Nickovic, Z.N. Vujnovic Zivkovic, J.B. Zivkovic, M.V. Mirkovic, D.R. Toskic, and D. Sokolovic. 2019. Melatonin treatment prevents carbon tetrachloride-induced acute lung injury in rats by mitigating tissue antioxidant capacity and inflammatory response. Bratislavské Lekárske Listy 120 (7): 527–531.
pubmed: 31602989 pmcid: 31602989
de Farias, T., M.M. Cruz, R. de Sa, I. Severi, J. Perugini, M. Senzacqua, et al. 2019. Melatonin supplementation decreases hypertrophic obesity and inflammation induced by high-fat diet in mice. Frontiers in Endocrinology 10: 750.
pubmed: 31749764 pmcid: 6848267 doi: 10.3389/fendo.2019.00750
DePalma, M.J., J.M. Ketchum, and T. Saullo. 2011. What is the source of chronic low back pain and does age play a role? Pain Medicine 12 (2): 224–233.
pubmed: 21266006 doi: 10.1111/j.1526-4637.2010.01045.x pmcid: 21266006
Berlin, K., L. Gerhardsson, J. Börjesson, E. Lindh, N. Lundström, A. Schütz, S. Skerfving, and C. Edling. 1995. Lead intoxication caused by skeletal disease. Scandinavian Journal of Work, Environment & Health 21: 296–300.
doi: 10.5271/sjweh.42
Colombier, P., J. Clouet, O. Hamel, L. Lescaudron, and J. Guicheux. 2014. The lumbar intervertebral disc: from embryonic development to degeneration. Joint, Bone, Spine 81 (2): 125–129.
doi: 10.1016/j.jbspin.2013.07.012
Adams, M.A., P. Dolan, and D.S. McNally. 2009. The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biology 28 (7): 384–389.
pubmed: 19586615 doi: 10.1016/j.matbio.2009.06.004 pmcid: 19586615
Zhou, J., J. Sun, D.Z. Markova, S. Li, C.K. Kepler, J. Hong, Y. Huang, W. Chen, K. Xu, F. Wei, and W. Ye. 2019. MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells. Life Sciences 221: 274–283.
pubmed: 30797016 doi: 10.1016/j.lfs.2019.02.041 pmcid: 30797016
Risbud, M.V., and I.M. Shapiro. 2014. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews Rheumatology 10 (1): 44–56.
pubmed: 24166242 doi: 10.1038/nrrheum.2013.160 pmcid: 24166242
Wu, X., S. Li, K. Wang, W. Hua, S. Li, Y. Song, Y. Zhang, S. Yang, and C. Yang. 2019. TNF-α regulates ITGβ1 and SYND4 expression in nucleus pulposus cells: activation of FAK/PI3K signaling. Inflammation. 42 (5): 1575–1584.
pubmed: 31111299 doi: 10.1007/s10753-019-01019-9 pmcid: 31111299
Hasmann, M., and I. Schemainda. 2003. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research 63 (21): 7436–7442.
pubmed: 14612543 pmcid: 14612543
Shi, C., H. Wu, D. Du, H.-J. Im, Y. Zhang, B. Hu, et al. 2018. Nicotinamide phosphoribosyltransferase inhibitor APO866 prevents IL-1β-induced human nucleus pulposus cell degeneration via autophagy. Cellular Physiology and Biochemistry 49 (6): 2463–2482.
pubmed: 30261504 doi: 10.1159/000493843 pmcid: 30261504
Huang, Y., Y. Peng, J. Sun, S. Li, J. Hong, J. Zhou, et al. 2020. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation: 1–14.
Krieg, A.M., A.-K. Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, G.A. Koretzky, and D.M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374 (6522): 546–549.
pubmed: 7700380 doi: 10.1038/374546a0 pmcid: 7700380
Sabatel, C., C. Radermecker, L. Fievez, G. Paulissen, S. Chakarov, C. Fernandes, S. Olivier, M. Toussaint, D. Pirottin, X. Xiao, P. Quatresooz, J.C. Sirard, D. Cataldo, L. Gillet, H. Bouabe, C.J. Desmet, F. Ginhoux, T. Marichal, and F. Bureau. 2017. Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46 (3): 457–473.
pubmed: 28329706 doi: 10.1016/j.immuni.2017.02.016 pmcid: 28329706
Jain, V.V., K. Kitagaki, T. Businga, I. Hussain, C. George, P. O'Shaughnessy, and J.N. Kline. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. The Journal of Allergy and Clinical Immunology 110 (6): 867–872.
pubmed: 12464952 doi: 10.1067/mai.2002.129371 pmcid: 12464952
Chiang, D.-J., Y.-L. Ye, W.-L. Chen, Y.-L. Lee, N.-Y. Hsu, and B.-L. Chiang. 2003. Ribavirin or CpG DNA sequence–modulated dendritic cells decrease the IgE level and airway inflammation. American Journal of Respiratory and Critical Care Medicine 168 (5): 575–580.
pubmed: 12941656 doi: 10.1164/rccm.2205005 pmcid: 12941656
Li, Y., J. Li, S. Li, Y. Li, X. Wang, B. Liu, Q. Fu, and S. Ma. 2015. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicology and Applied Pharmacology 286 (1): 53–63.
pubmed: 25791922 doi: 10.1016/j.taap.2015.03.010 pmcid: 25791922
Beeh, K.-M., F. Kanniess, F. Wagner, C. Schilder, I. Naudts, A. Hammann-Haenni, J. Willers, H. Stocker, P. Mueller, M.F. Bachmann, and W.A. Renner. 2013. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. The Journal of Allergy and Clinical Immunology 131 (3): 866–874.
pubmed: 23384679 doi: 10.1016/j.jaci.2012.12.1561 pmcid: 23384679
Casale, T., J. Cole, E. Beck, C. Vogelmeier, J. Willers, C. Lassen, et al. 2015. CYT 003, a TLR 9 agonist, in persistent allergic asthma–a randomized placebo-controlled Phase 2b study. Allergy. 70 (9): 1160–1168.
pubmed: 26042362 doi: 10.1111/all.12663 pmcid: 26042362
Klimek, L., J. Willers, A. Hammann-Haenni, O. Pfaar, H. Stocker, P. Mueller, W.A. Renner, and M.F. Bachmann. 2011. Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clinical and Experimental Allergy 41 (9): 1305–1312.
pubmed: 21672053 doi: 10.1111/j.1365-2222.2011.03783.x pmcid: 21672053
T Lubka R, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. 2016.
Li, C., W. Yin, N. Yu, D. Zhang, H. Zhao, J. Liu, J. Liu, Y. Pan, and L. Lin. 2019. miR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome. Oral Diseases 25 (8): 2030–2039.
pubmed: 31529565 doi: 10.1111/odi.13198 pmcid: 31529565
Ockene, I.S., and N.H. Miller. 1997. Cigarette smoking, cardiovascular disease, and stroke: a statement for healthcare professionals from the American Heart Association. Circulation 96 (9): 3243–3247.
pubmed: 9386200 doi: 10.1161/01.CIR.96.9.3243 pmcid: 9386200
Pepine, C.J., J.D. Schlaifer, G.J. Mancini, B. Pitt, B.J. O'Neill, and H.E. Haber. 1998. Influence of smoking status on progression of endothelial dysfunction. Clinical Cardiology 21 (5): 331–334.
pubmed: 9595215 doi: 10.1002/clc.4960210506 pmcid: 9595215
Zeiher, A.M., V. Schächinger, and J. Minners. 1995. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 92 (5): 1094–1100.
pubmed: 7648652 doi: 10.1161/01.CIR.92.5.1094 pmcid: 7648652
Zhang, Y., X. Liu, X. Bai, Y. Lin, Z. Li, J. Fu, M. Li, T. Zhao, H. Yang, R. Xu, J. Li, J. Ju, B. Cai, C. Xu, and B. Yang. 2018. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. Journal of Pineal Research 64 (2): e12449.
doi: 10.1111/jpi.12449
Malhi GS, Mann JJ. Seminar Depression. 2018.
Lim, G.Y., W.W. Tam, Y. Lu, C.S. Ho, M.W. Zhang, and R.C. Ho. 2018. Prevalence of depression in the community from 30 countries between 1994 and 2014. Scientific Reports 8 (1): 1–10.
Johnston, K.M., L.C. Powell, I.M. Anderson, S. Szabo, and S. Cline. 2019. The burden of treatment-resistant depression: a systematic review of the economic and quality of life literature. Journal of Affective Disorders 242: 195–210.
pubmed: 30195173 doi: 10.1016/j.jad.2018.06.045 pmcid: 30195173
Cosker, E., T. Schwitzer, N. Ramoz, F. Ligier, L. Lalanne, P. Gorwood, R. Schwan, and V. Laprévote. 2018. The effect of interactions between genetics and cannabis use on neurocognition. A review. Progress in Neuro-Psychopharmacology & Biological Psychiatry 82: 95–106.
doi: 10.1016/j.pnpbp.2017.11.024
Thase, M.E. 2016. Managing medical comorbidities in patients with depression to improve prognosis. The Journal of Clinical Psychiatry 77: 22–27.
pubmed: 26829434 doi: 10.4088/JCP.14077su1c.04 pmcid: 26829434
Mistry, P., and M.J. Kaplan. 2017. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clinical Immunology 185: 59–73.
pubmed: 27519955 doi: 10.1016/j.clim.2016.08.010 pmcid: 27519955
Dedong, H., Z. Feiyan, S. Jie, L. Xiaowei, and W. Shaoyang. 2019. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunology Letters 210: 33–39.
pubmed: 31004679 doi: 10.1016/j.imlet.2019.04.002 pmcid: 31004679
Kahlenberg, J.M., S.G. Thacker, C.C. Berthier, C.D. Cohen, M. Kretzler, and M.J. Kaplan. 2011. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. The Journal of Immunology. 187 (11): 6143–6156.
pubmed: 22058412 doi: 10.4049/jimmunol.1101284 pmcid: 22058412
Fu, R., C. Guo, S. Wang, Y. Huang, O. Jin, H. Hu, J. Chen, B. Xu, M. Zhou, J. Zhao, S.S.J. Sung, H. Wang, F. Gaskin, N. Yang, and S.M. Fu. 2017. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis & Rheumatology 69 (8): 1636–1646.
doi: 10.1002/art.40155
Ma, Z.-Z., H.-S. Sun, J.-C. Lv, L. Guo, and Q.-R. Yang. 2018. Expression and clinical significance of the NEK7-NLRP3 inflammasome signaling pathway in patients with systemic lupus erythematosus. Journal of Inflammation 15 (1): 16.
pubmed: 30202244 pmcid: 6122698 doi: 10.1186/s12950-018-0192-9
Moniruzzaman, M., I. Ghosal, D. Das, and S.B. Chakraborty. 2018. Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biological Research 51: 17.
pubmed: 29891016 pmcid: 5996524 doi: 10.1186/s40659-018-0168-5
Bonomini, F., M. Dos Santos, F.V. Veronese, and R. Rezzani. 2019. NLRP3 Inflammasome modulation by melatonin supplementation in chronic pristane-induced lupus nephritis. International Journal of Molecular Sciences 20 (14): 3466.
pmcid: 6678949 doi: 10.3390/ijms20143466
Dai, W., H. Huang, L. Si, S. Hu, L. Zhou, L. Xu, and Y. Deng. 2019. Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway. International Journal of Molecular Medicine 44 (4): 1197–1204.
pubmed: 31432108 pmcid: 6713408
Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine 352 (16): 1685–1695.
pubmed: 15843671 doi: 10.1056/NEJMra043430
Zhang, H.M., and Y. Zhang. 2014. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. Journal of Pineal Research 57 (2): 131–146.
pubmed: 25060102 doi: 10.1111/jpi.12162 pmcid: 25060102
Ma, S., J. Chen, J. Feng, R. Zhang, M. Fan, D. Han, X. Li, C. Li, J. Ren, Y. Wang, and F. Cao. 2018. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxidative Medicine and Cellular Longevity 2018: 1–12.
Campagnolo, D.I., J.A. Bartlett, and S.E. Keller. 2000. Influence of neurological level on immune function following spinal cord injury: a review. The Journal of Spinal Cord Medicine 23 (2): 121–128.
pubmed: 10914353 doi: 10.1080/10790268.2000.11753519
Bareyre, F.M., and M.E. Schwab. 2003. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends in Neurosciences 26 (10): 555–563.
pubmed: 14522149 doi: 10.1016/j.tins.2003.08.004
Di Giovanni, S., S.M. Knoblach, C. Brandoli, S.A. Aden, E.P. Hoffman, and A.I. Faden. 2003. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Annals of Neurology 53 (4): 454–468.
pubmed: 12666113 doi: 10.1002/ana.10472 pmcid: 12666113
Gris, D., E.F. Hamilton, and L.C. Weaver. 2008. The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Experimental Neurology 211 (1): 259–270.
pubmed: 18384773 doi: 10.1016/j.expneurol.2008.01.033 pmcid: 18384773
Yuan, J., and B.A. Yankner. 2000. Apoptosis in the nervous system. Nature. 407 (6805): 802–809.
pubmed: 11048732 doi: 10.1038/35037739 pmcid: 11048732
Xu, G., D. Shi, Z. Zhi, R. Ao, and B. Yu. 2019. Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. Journal of Cellular Biochemistry 120 (4): 5183–5192.
pubmed: 30257055 doi: 10.1002/jcb.27794 pmcid: 30257055
Loi, M., and M. Molinari. 2020. Mechanistic insights in recov-ER-phagy: micro-ER-phagy to recover from stress. Autophagy. 16 (2): 385–386.
pubmed: 31961258 pmcid: 6984597 doi: 10.1080/15548627.2019.1709767
Ishibashi, T., S. Morita, S. Kishimoto, S. Uraki, K. Takeshima, Y. Furukawa, H. Inaba, H. Ariyasu, H. Iwakura, H. Furuta, M. Nishi, F.R. Papa, and T. Akamizu. 2020. nAChR signaling regulates IRE1alpha activation to protect beta cells against terminal unfolded protein response under irremediable ER stress. Journal of Diabetes Investigation. 11: 801–813.
pubmed: 31925927 pmcid: 7378412 doi: 10.1111/jdi.13211
Huang, Y., Y. Li, Q. Liu, J. Zhang, Z. Zhang, T. Wu, et al. 2020. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochemical and Biophysical Research Communications.
Roy, A., and A. Kumar. 2019. ER Stress and unfolded protein response in cancer cachexia. Cancers 11 (12).
Oslowski Christine, M., T. Hara, B. O’Sullivan-Murphy, K. Kanekura, S. Lu, M. Hara, et al. 2012. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metabolism 16 (2): 265–273.
pubmed: 22883234 pmcid: 3418541 doi: 10.1016/j.cmet.2012.07.005
Kahles, F., C. Meyer, J. Möllmann, S. Diebold, H.M. Findeisen, C. Lebherz, et al. 2014. GLP-1 Secretion is increased by inflammatory stimuli in an IL-6–dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes. 63 (10): 3221–3229.
pubmed: 24947356 doi: 10.2337/db14-0100 pmcid: 24947356
Hu, X., D. Li, J. Wang, J. Guo, Y. Li, Y. Cao, N. Zhang, and Y. Fu. 2018. Melatonin inhibits endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in lipopolysaccharide-induced endometritis in mice. International Immunopharmacology 64: 101–109.
pubmed: 30170255 doi: 10.1016/j.intimp.2018.08.028 pmcid: 30170255
Xu, F., J.Y. Zhong, X. Lin, S.K. Shan, G. Bei, M.H. Zheng, et al. 2020. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. Journal of Pineal Research: e12631.
Press, V.G., A.S. Cifu, and S.R. White. 2017. Screening for chronic obstructive pulmonary disease. Jama. 318 (17): 1702–1703.
pubmed: 29114819 doi: 10.1001/jama.2017.15782
Eapen, M.S., S. Myers, E.H. Walters, and S.S. Sohal. 2017. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Review of Respiratory Medicine 11 (10): 827–839.
pubmed: 28743228 doi: 10.1080/17476348.2017.1360769
Martínez, G.J., D.S. Celermajer, and S. Patel. 2018. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 269: 262–271.
pubmed: 29352570 doi: 10.1016/j.atherosclerosis.2017.12.027
Sun, X., H. Hao, Q. Han, X. Song, J. Liu, L. Dong, W. Han, and Y. Mu. 2017. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats. Stem Cell Research & Therapy 8 (1): 241.
doi: 10.1186/s13287-017-0668-1
Yu, G., Z. Bai, Z. Chen, H. Chen, G. Wang, G. Wang, and Z. Liu. 2017. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. International Immunopharmacology 43: 203–209.
pubmed: 28038382 doi: 10.1016/j.intimp.2016.12.022
Colarusso, C., M. Terlizzi, A. Molino, A. Pinto, and R. Sorrentino. 2017. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget 8 (47): 81813–81824.
pubmed: 29137224 pmcid: 5669850 doi: 10.18632/oncotarget.17850
Eltom, S., M.G. Belvisi, C.S. Stevenson, S.A. Maher, E. Dubuis, K.A. Fitzgerald, et al. 2014. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One 9 (11).
Zou, Y., X. Chen, J. Liu, D. Bo Zhou, X. Kuang, J. Xiao, et al. 2017. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters. International Journal of Chronic Obstructive Pulmonary Disease 12: 1247.
pubmed: 28490868 pmcid: 5413485 doi: 10.2147/COPD.S131877
J-w, Hwang. 2013. Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radical Biology & Medicine 61: 95–110.
doi: 10.1016/j.freeradbiomed.2013.03.015
Li, Y., P. Wang, X. Yang, W. Wang, J. Zhang, Y. He, W. Zhang, T. Jing, B. Wang, and R. Lin. 2016. SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells. Molecular Immunology 77: 148–156.
pubmed: 27505710 doi: 10.1016/j.molimm.2016.07.018 pmcid: 27505710
Peng, Z., W. Zhang, J. Qiao, and B. He. 2018. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD. International Immunopharmacology 62: 23–28.
pubmed: 29990691 doi: 10.1016/j.intimp.2018.06.033
Hofbauer LC, editor. Osteoporosis: now and the future. 15th European Congress of Endocrinology; 2013: BioScientifica.
Krassas, G., and P. Papadopoulou. 2001. Oestrogen action on bone cells. Journal of Musculoskeletal & Neuronal Interactions 2 (2): 143–152.
Xu, Y., H. Sheng, Q. Bao, Y. Wang, J. Lu, and X. Ni. 2016. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression-and anxiety-like behavior and hippocampal inflammation in mice. Brain, Behavior, and Immunity 56: 175–186.
pubmed: 26928197 doi: 10.1016/j.bbi.2016.02.022
Hamblin, M.R. 2016. Shining light on the head: photobiomodulation for brain disorders. BBA Clinical. 6: 113–124.
pubmed: 27752476 pmcid: 5066074 doi: 10.1016/j.bbacli.2016.09.002
Mansoori, M.N., P. Shukla, M. Kakaji, A.M. Tyagi, K. Srivastava, M. Shukla, M. Dixit, J. Kureel, S. Gupta, and D. Singh. 2016. IL-18BP is decreased in osteoporotic women: prevents inflammasome mediated IL-18 activation and reduces Th17 differentiation. Scientific Reports 6: 33680.
pubmed: 27649785 pmcid: 5030484 doi: 10.1038/srep33680
Xu, L., L. Zhang, Z. Wang, C. Li, S. Li, L. Li, Q. Fan, and L. Zheng. 2018. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcified Tissue International 103 (4): 400–410.
pubmed: 29804160 doi: 10.1007/s00223-018-0428-y
Connolly, E.S., Jr., A.A. Rabinstein, J.R. Carhuapoma, C.P. Derdeyn, J. Dion, R.T. Higashida, et al. 2012. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 43 (6): 1711–1737.
pubmed: 22556195 doi: 10.1161/STR.0b013e3182587839
Chen, S., Q. Ma, P.R. Krafft, Q. Hu, W. Rolland II, P. Sherchan, J. Zhang, J. Tang, and J.H. Zhang. 2013. P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiology of Disease 58: 296–307.
pubmed: 23816751 pmcid: 3771387 doi: 10.1016/j.nbd.2013.06.011
Finkel, T. 2011. Signal transduction by reactive oxygen species. The Journal of Cell Biology 194 (1): 7–15.
pubmed: 21746850 pmcid: 3135394 doi: 10.1083/jcb.201102095
Murphy, M.P. 2009. How mitochondria produce reactive oxygen species. The Biochemical Journal 417 (1): 1–13.
pubmed: 19061483 doi: 10.1042/BJ20081386
Li, J., J. Chen, H. Mo, J. Chen, C. Qian, F. Yan, C. Gu, Q. Hu, L. Wang, and G. Chen. 2016. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Molecular Neurobiology 53 (4): 2668–2678.
pubmed: 26143258 doi: 10.1007/s12035-015-9318-8 pmcid: 26143258
Li, J., J. Lu, Y. Mi, Z. Shi, C. Chen, J. Riley, and C. Zhou. 2014. Voltage-dependent anion channels (VDACs) promote mitophagy to protect neuron from death in an early brain injury following a subarachnoid hemorrhage in rats. Brain Research 1573: 74–83.
pubmed: 24880016 doi: 10.1016/j.brainres.2014.05.021 pmcid: 24880016
Wen X, Klionsky DJ, editors. At a glance: a history of autophagy and cancer. Seminars in cancer biology; 2019: Elsevier.
Yang, Y., and D.J. Klionsky. 2020. Autophagy and disease: unanswered questions. Cell Death and Differentiation.
Galluzzi, L., and D.R. Green. 2019. Autophagy-independent functions of the autophagy machinery. Cell. 177 (7): 1682–1699.
pubmed: 31199916 pmcid: 7173070 doi: 10.1016/j.cell.2019.05.026
Hazari, Y., J.M. Bravo-San Pedro, C. Hetz, L. Galluzzi, and G. Kroemer. 2020. Autophagy in hepatic adaptation to stress. Journal of Hepatology 72 (1): 183–196.
pubmed: 31849347 doi: 10.1016/j.jhep.2019.08.026 pmcid: 31849347
Liu, L., X. Liao, H. Wu, Y. Li, Y. Zhu, and Q. Chen. 2020. Mitophagy and its contribution to metabolic and aging associated disorders. Antioxidants & Redox Signaling 32: 906–927.
doi: 10.1089/ars.2019.8013
Cao, S., S. Shrestha, J. Li, X. Yu, J. Chen, F. Yan, et al. 2017. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Scientific Reports 7 (1): 1–11.
doi: 10.1038/s41598-016-0028-x
Liu, W.-C., X. Wang, X. Zhang, X. Chen, and X. Jin. 2017. Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Frontiers in Aging Neuroscience 9: 165.
pubmed: 28596733 pmcid: 5442221 doi: 10.3389/fnagi.2017.00165
Cao, Z., Y. Fang, Y. Lu, D. Tan, C. Du, Y. Li, et al. 2017. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. Journal of Pineal Research 62 (3): e12389.
doi: 10.1111/jpi.12389
Dong, Y., C. Fan, W. Hu, S. Jiang, Z. Ma, X. Yan, C. Deng, S. di, Z. Xin, G. Wu, Y. Yang, R.J. Reiter, and G. Liang. 2016. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP 3 inflammasome and apoptosis signaling. Journal of Pineal Research 60 (3): 253–262.
pubmed: 26639408 doi: 10.1111/jpi.12300 pmcid: 26639408
Fernández-Gil, B., A.E.A. Moneim, F. Ortiz, Y.-Q. Shen, V. Soto-Mercado, M. Mendivil-Perez, et al. 2017. Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS One 12 (4).
García, J.A., H. Volt, C. Venegas, C. Doerrier, G. Escames, L.C. López, and D. Acuña-Castroviejo. 2015. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. The FASEB Journal. 29 (9): 3863–3875.
pubmed: 26045547 doi: 10.1096/fj.15-273656 pmcid: 26045547
Liu, Z., L. Gan, Y. Xu, D. Luo, Q. Ren, S. Wu, and C. Sun. 2017. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. Journal of Pineal Research 63 (1): e12414.
doi: 10.1111/jpi.12414
Ortiz, F., D. Acuña-Castroviejo, C. Doerrier, J.C. Dayoub, L.C. López, C. Venegas, J.A. García, A. López, H. Volt, M. Luna-Sánchez, and G. Escames. 2015. Melatonin blunts the mitochondrial/NLRP 3 connection and protects against radiation-induced oral mucositis. Journal of Pineal Research 58 (1): 34–49.
pubmed: 25388914 doi: 10.1111/jpi.12191 pmcid: 25388914
Rahim, I., B. Djerdjouri, R.K. Sayed, M. Fernández-Ortiz, B. Fernández-Gil, A. Hidalgo-Gutiérrez, L.C. López, G. Escames, R.J. Reiter, and D. Acuña-Castroviejo. 2017. Melatonin administration to wild-type mice and nontreated NLRP 3 mutant mice share similar inhibition of the inflammatory response during sepsis. Journal of Pineal Research 63 (1): e12410.
doi: 10.1111/jpi.12410
Shim, D.-W., H.J. Shin, J.-W. Han, Y.-E. Ji, C.-H. Jang, S. Koppula, T.B. Kang, and K.H. Lee. 2015. A novel synthetic derivative of melatonin, 5-hydroxy-2’-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicology and Applied Pharmacology 284 (2): 227–235.
pubmed: 25689174 doi: 10.1016/j.taap.2015.02.006 pmcid: 25689174
Volt, H., J.A. García, C. Doerrier, M.E. Díaz-Casado, A. Guerra-Librero, L.C. López, G. Escames, J.A. Tresguerres, and D. Acuña-Castroviejo. 2016. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. Journal of Pineal Research 60 (2): 193–205.
pubmed: 26681113 doi: 10.1111/jpi.12303 pmcid: 26681113
Zhang, Y., X. Li, J.J. Grailer, N. Wang, M. Wang, J. Yao, R. Zhong, G.F. Gao, P.A. Ward, D.X. Tan, and X. Li. 2016. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. Journal of Pineal Research 60 (4): 405–414.
pubmed: 26888116 doi: 10.1111/jpi.12322 pmcid: 26888116

Auteurs

Milad Ashrafizadeh (M)

Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.

Masoud Najafi (M)

Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Nasim Kavyiani (N)

Department of Basic Science, Faculty of Veterinary Medicine Faculty, Islamic Azad Branch, University of Shushtar, Shushtar, Khuzestan, Iran.

Reza Mohammadinejad (R)

Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

Tahereh Farkhondeh (T)

Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.

Saeed Samarghandian (S)

Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran. samarghandians1@nums.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH