Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome.
Animals
Anti-Inflammatory Agents
/ pharmacology
Antioxidants
/ metabolism
Humans
Inflammasomes
/ antagonists & inhibitors
Inflammation Mediators
/ antagonists & inhibitors
Melatonin
/ metabolism
NLR Family, Pyrin Domain-Containing 3 Protein
/ antagonists & inhibitors
Wnt Signaling Pathway
/ drug effects
NLRP3
anti-inflammatory
disease therapy
inflammation
melatonin
Journal
Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
12
05
2020
accepted:
27
01
2021
revised:
21
01
2021
pubmed:
3
3
2021
medline:
24
12
2021
entrez:
2
3
2021
Statut:
ppublish
Résumé
Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.
Identifiants
pubmed: 33651308
doi: 10.1007/s10753-021-01428-9
pii: 10.1007/s10753-021-01428-9
doi:
Substances chimiques
Anti-Inflammatory Agents
0
Antioxidants
0
Inflammasomes
0
Inflammation Mediators
0
NLR Family, Pyrin Domain-Containing 3 Protein
0
Melatonin
JL5DK93RCL
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1207-1222Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
Références
Samarghandian, S., Samini, F., Azimi-Nezhad, M. and Farkhondeh, T. 2017. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neuroscience Letters 659: 26–32.
Samarghandian, S., Azimi‐Nezhad, M., Afshari, R., Farkhondeh, T. and Karimnezhad, F. 2015. Effects of buprenorphine on balance of oxidant/antioxidant system in the different ages of male rat liver. Journal of Biochemical and Molecular Toxicology 29(6): 249–253.
Samarghandian, S., Borji, A., Afshari, R., Delkhosh, M.B. and Gholami, A. 2013. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicology Mechanisms and Methods 23(6): 432–436.
Haque, M.E., Akther, M., Jakaria, M., Kim, I.S., Azam, S. and Choi, D.K. 2020. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease. Movement Disorders 35(1): 20–33.
Farkhondeh, T., Samarghandian, S., Azimin-Nezhad, M. and Samini, F. 2015. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. International Journal of Clinical and Experimental Medicine 8(2): 2465.
Wu, D., Y. Chen, Y. Sun, Q. Gao, H. Li, Z. Yang, et al. 2019. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review. Inflammation.
Wu, X., H. Ji, Y. Wang, C. Gu, W. Gu, L. Hu, et al. 2019. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 Axis. Oxidative Medicine and Cellular Longevity 2019.
Wei, J., H. Wang, H. Wang, B. Wang, L. Meng, Y. Xin, and X. Jiang. 2019. The role of NLRP3 inflammasome activation in radiation damage. Biomedicine & Pharmacotherapy 118: 109217.
doi: 10.1016/j.biopha.2019.109217
Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140 (6): 805–820.
doi: 10.1016/j.cell.2010.01.022
Akira, S. 2006. TLR Signaling. In From innate immunity to immunological memory, ed. B. Pulendran and R. Ahmed, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg.
Cowie, A.M., B.N. Dittel, and C.L. Stucky. 2019. A novel sex-dependent target for the treatment of postoperative pain: the NLRP3 inflammasome. Frontiers in Neurology 10 (622).
Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. International Journal of Molecular Sciences 20 (13): 3328.
pmcid: 6651423
doi: 10.3390/ijms20133328
Lamkanfi, M., and Vishva M. Dixit. 2014. Mechanisms and functions of inflammasomes. Cell 157 (5): 1013–1022.
pubmed: 24855941
pmcid: 24855941
doi: 10.1016/j.cell.2014.04.007
Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481 (7381): 278–286.
pubmed: 22258606
doi: 10.1038/nature10759
pmcid: 22258606
Lee, S.-H., C.-H. Kwak, S.-K. Lee, S.-H. Ha, J. Park, T.-W. Chung, K.T. Ha, S.J. Suh, Y.C. Chang, H.W. Chang, Y.C. Lee, B.S. Kang, J. Magae, and C.H. Kim. 2016. Anti-inflammatory effect of ascochlorin in LPS-stimulated raw 264.7 macrophage cells is accompanied with the down-regulation of iNOS, COX-2 and proinflammatory cytokines through NF-κB, ERK1/2, and p38 signaling pathway. Journal of Cellular Biochemistry 117 (4): 978–987.
pubmed: 26399466
doi: 10.1002/jcb.25383
pmcid: 26399466
Swanson, K.V., M. Deng, and J.P.-Y. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19 (8): 477–489.
pubmed: 31036962
pmcid: 7807242
doi: 10.1038/s41577-019-0165-0
Samarghandian, S., F. Samini, M. Azimi-Nezhad, and T. Farkhondeh. 2017. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neuroscience Letters 659: 26–32.
pubmed: 28866053
doi: 10.1016/j.neulet.2017.08.065
pmcid: 28866053
Samarghandian, S., M. Azimi-Nezhad, A. Borji, M. Samini, and T. Farkhondeh. 2017. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats. BMC Complementary and Alternative Medicine 17 (1): 1–7.
doi: 10.1186/s12906-017-1753-9
Juliana, C., T. Fernandes-Alnemri, S. Kang, A. Farias, F. Qin, and E.S. Alnemri. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. The Journal of Biological Chemistry 287 (43): 36617–36622.
pubmed: 22948162
pmcid: 3476327
doi: 10.1074/jbc.M112.407130
Ding, S., S. Xu, Y. Ma, G. Liu, H. Jang, and J. Fang. 2019. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules 9 (12): 850.
pmcid: 6995523
doi: 10.3390/biom9120850
Abderrazak, A., T. Syrovets, D. Couchie, K. El Hadri, B. Friguet, T. Simmet, et al. 2015. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biology 4: 296–307.
pubmed: 25625584
pmcid: 4315937
doi: 10.1016/j.redox.2015.01.008
Amores-Iniesta, J., M. Barberà-Cremades, C.M. Martínez, J.A. Pons, B. Revilla-Nuin, L. Martínez-Alarcón, F. di Virgilio, P. Parrilla, A. Baroja-Mazo, and P. Pelegrín. 2017. extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Reports 21 (12): 3414–3426.
pubmed: 29262323
doi: 10.1016/j.celrep.2017.11.079
pmcid: 29262323
da Costa, L.S., A. Outlioua, A. Anginot, K. Akarid, and D. Arnoult. 2019. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell Death & Disease 10 (5): 346.
doi: 10.1038/s41419-019-1579-0
Mariathasan, S., D.S. Weiss, K. Newton, J. McBride, K. O'Rourke, M. Roose-Girma, W.P. Lee, Y. Weinrauch, D.M. Monack, and V.M. Dixit. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440 (7081): 228–232.
pubmed: 16407890
doi: 10.1038/nature04515
pmcid: 16407890
Arioz, B.I., B. Tastan, E. Tarakcioglu, K.U. Tufekci, M. Olcum, N. Ersoy, A. Bagriyanik, K. Genc, and S. Genc. 2019. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Frontiers in Immunology 10: 1511.
pubmed: 31327964
pmcid: 6615259
doi: 10.3389/fimmu.2019.01511
de Boer, I.H., S. Bangalore, A. Benetos, A.M. Davis, E.D. Michos, P. Muntner, P. Rossing, S. Zoungas, and G. Bakris. 2017. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care 40 (9): 1273–1284.
pubmed: 28830958
doi: 10.2337/dci17-0026
pmcid: 28830958
Cooper, S.A., A. Whaley-Connell, J. Habibi, Y. Wei, G. Lastra, C. Manrique, S. Stas, and J.R. Sowers. 2007. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. American Journal of Physiology. Heart and Circulatory Physiology 293 (4): H2009–H2023.
pubmed: 17586614
doi: 10.1152/ajpheart.00522.2007
pmcid: 17586614
Forbes, J.M., and M.E. Cooper. 2013. Mechanisms of diabetic complications. Physiological Reviews 93 (1): 137–188.
pubmed: 23303908
doi: 10.1152/physrev.00045.2011
pmcid: 23303908
Beckman, J.A., F. Paneni, F. Cosentino, and M.A. Creager. 2013. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. European Heart Journal 34 (31): 2444–2452.
pubmed: 23625211
doi: 10.1093/eurheartj/eht142
pmcid: 23625211
Ferreira, N.S., T. Bruder-Nascimento, C.A. Pereira, C.Z. Zanotto, D.S. Prado, J.F. Silva, et al. 2019. NLRP3 inflammasome and mineralocorticoid receptors are associated with vascular dysfunction in type 2 diabetes mellitus. Cells 8 (12).
Zhang, Y.Z., Y.L. Zhang, Q. Huang, C. Huang, Z.L. Jiang, F. Cai, and J.F. Shen. 2019. AdipoRon alleviates free fatty acid-induced myocardial cell injury via suppressing Nlrp3 inflammasome activation. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy 12: 2165–2179.
doi: 10.2147/DMSO.S221841
Hu, R., M.Q. Wang, S.H. Ni, M. Wang, L.Y. Liu, H.Y. You, X.H. Wu, Y.J. Wang, L. Lu, and L.B. Wei. 2020. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-kappaB/NLRP3 signaling pathway in AGEs-induced HUVECs. European Journal of Pharmacology 867: 172797.
pubmed: 31747547
doi: 10.1016/j.ejphar.2019.172797
Leng, W., M. Wu, H. Pan, X. Lei, L. Chen, Q. Wu, X. Ouyang, and Z. Liang. 2019. The SGLT2 inhibitor dapagliflozin attenuates the activity of ROS-NLRP3 inflammasome axis in steatohepatitis with diabetes mellitus. Annals of Translational Medicine 7 (18): 429.
pubmed: 31700865
pmcid: 6803170
doi: 10.21037/atm.2019.09.03
Li, D., G. Shi, J. Wang, D. Zhang, Y. Pan, H. Dou, and Y. Hou. 2019. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Research & Therapy 21 (1): 105.
doi: 10.1186/s13075-019-1876-0
Mirhoseini, M., Z. Rezanejad Gatabi, M. Saeedi, K. Morteza-Semnani, F. Talebpour Amiri, H.R. Kelidari, and A.A. Karimpour Malekshah. 2019. Protective effects of melatonin solid lipid nanoparticles on testis histology after testicular trauma in rats. Research in Pharmaceutical Sciences 14 (3): 201–208.
pubmed: 31160897
pmcid: 6540923
doi: 10.4103/1735-5362.258486
Wang, X., H. Huang, C. Su, Q. Zhong, and G. Wu. 2019. Cilostazol ameliorates high free fatty acid (FFA)-induced activation of NLRP3 inflammasome in human vascular endothelial cells. Artificial Cells, Nanomedicine, and Biotechnology 47 (1): 3704–3710.
pubmed: 31514535
doi: 10.1080/21691401.2019.1665058
Yang, X., C. Qu, J. Jia, and Y. Zhan. 2019. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology. 224 (6): 786–791.
pubmed: 31477246
doi: 10.1016/j.imbio.2019.08.008
Chen, T.C., C.K. Yen, Y.C. Lu, C.S. Shi, R.Z. Hsieh, S.F. Chang, and C.N. Chen. 2020. The antagonism of 6-shogaol in high-glucose-activated NLRP3 inflammasome and consequent calcification of human artery smooth muscle cells. Cell & Bioscience 10: 5.
doi: 10.1186/s13578-019-0372-1
Sierksma, A., A. Lu, R. Mancuso, N. Fattorelli, N. Thrupp, E. Salta, et al. 2020. Novel Alzheimer risk genes determine the microglia response to amyloid-beta but not to tau pathology. EMBO Molecular Medicine: e10606.
Zhou, Z., M. Muller, P. Kanel, J. Chua, V. Kotagal, D.I. Kaufer, et al. 2019. Apathy rating scores and beta-amyloidopathy in Parkinson disease patients at risk for cognitive decline. Neurology.
Hong, Y., Y. Liu, D. Yu, M. Wang, and Y. Hou. 2019. The neuroprotection of progesterone against Abeta-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. International Immunopharmacology 74: 105669.
pubmed: 31176046
doi: 10.1016/j.intimp.2019.05.054
Luciunaite, A., R.M. McManus, M. Jankunec, I. Racz, C. Dansokho, I. Dalgediene, et al. 2019. Soluble abeta oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. Journal of Neurochemistry: e14945.
La Rosa, F., M. Saresella, I. Marventano, F. Piancone, E. Ripamonti, N. Al-Daghri, et al. 2019. Stavudine reduces NLRP3 inflammasome activation and modulates amyloid-beta autophagy. Journal of Alzheimer’s Disease: JAD. 72 (2): 401–412.
pubmed: 31594217
doi: 10.3233/JAD-181259
Nakanishi, A., N. Kaneko, H. Takeda, T. Sawasaki, S. Morikawa, W. Zhou, M. Kurata, T. Yamamoto, S.M.F. Akbar, T. Zako, and J. Masumoto. 2018. Amyloid beta directly interacts with NLRP3 to initiate inflammasome activation: identification of an intrinsic NLRP3 ligand in a cell-free system. Inflammation and Regeneration 38: 27.
pubmed: 30459926
pmcid: 6231249
doi: 10.1186/s41232-018-0085-6
Ruan, Y., X. Qiu, Y.D. Lv, D. Dong, X.J. Wu, J. Zhu, and X.Y. Zheng. 2019. Kainic acid Induces production and aggregation of amyloid beta-protein and memory deficits by activating inflammasomes in NLRP3- and NF-kappaB-stimulated pathways. Aging 11 (11): 3795–3810.
pubmed: 31182681
pmcid: 6594814
doi: 10.18632/aging.102017
Gourmaud, S., H. Shou, D.J. Irwin, K. Sansalone, L.M. Jacobs, T.H. Lucas, E.D. Marsh, K.A. Davis, F.E. Jensen, and D.M. Talos. 2020. Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain : a Journal of Neurology 143 (1): 191–209.
doi: 10.1093/brain/awz381
Llibre-Guerra, J.J., Y. Li, S.E. Schindler, B.A. Gordon, A.M. Fagan, J.C. Morris, T.L.S. Benzinger, J. Hassenstab, G. Wang, R. Allegri, S.B. Berman, J. Chhatwal, M.R. Farlow, D.M. Holtzman, M. Jucker, J. Levin, J.M. Noble, S. Salloway, P. Schofield, C. Karch, N.C. Fox, C. Xiong, R.J. Bateman, and E. McDade. 2019. Association of longitudinal changes in cerebrospinal fluid total tau and phosphorylated tau 181 and brain atrophy with disease progression in patients with Alzheimer disease. JAMA Network Open 2 (12): e1917126.
pubmed: 31825500
pmcid: 6991202
doi: 10.1001/jamanetworkopen.2019.17126
Ising, C., C. Venegas, S. Zhang, H. Scheiblich, S.V. Schmidt, A. Vieira-Saecker, S. Schwartz, S. Albasset, R.M. McManus, D. Tejera, A. Griep, F. Santarelli, F. Brosseron, S. Opitz, J. Stunden, M. Merten, R. Kayed, D.T. Golenbock, D. Blum, E. Latz, L. Buée, and M.T. Heneka. 2019. NLRP3 inflammasome activation drives tau pathology. Nature. 575 (7784): 669–673.
pubmed: 31748742
pmcid: 7324015
doi: 10.1038/s41586-019-1769-z
Huang, L., S. Duan, H. Shao, A. Zhang, S. Chen, P. Zhang, N. Wang, W. Wang, Y. Wu, J. Wang, H. Liu, W. Yao, Q. Zhang, and F. Feng. 2019. NLRP3 deletion inhibits inflammation-driven mouse lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide. Respiratory Research 20 (1): 20.
pubmed: 30696442
pmcid: 6352353
doi: 10.1186/s12931-019-0983-4
Deora, V., J.D. Lee, E.A. Albornoz, L. McAlary, C.J. Jagaraj, A.A.B. Robertson, J.D. Atkin, M.A. Cooper, K. Schroder, J.J. Yerbury, R. Gordon, and T.M. Woodruff. 2020. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68 (2): 407–421.
pubmed: 31596526
doi: 10.1002/glia.23728
pmcid: 31596526
Zhang, H.S., M.F. Liu, X.Y. Ji, C.R. Jiang, Z.L. Li, and B. OuYang. 2019. Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p. Life Sciences 239: 116935.
pubmed: 31610203
doi: 10.1016/j.lfs.2019.116935
pmcid: 31610203
Yoon, Y.M., H.J. Kim, J.H. Lee, and S.H. Lee. 2019. Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa protein 1L in human mesenchymal stem cells under oxidative stress. International Journal of Molecular Sciences 20 (18).
Wang, X., Y. Bian, R. Zhang, X. Liu, L. Ni, B. Ma, R. Zeng, Z. Zhao, X. Song, and C. Liu. 2019. Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting ROS/NLRP3 axis. Biochemical and Biophysical Research Communications 519 (2): 402–408.
pubmed: 31521245
doi: 10.1016/j.bbrc.2019.09.005
pmcid: 31521245
Duan, S., N. Wang, L. Huang, H. Shao, P. Zhang, W. Wang, Y. Wu, J. Wang, H. Liu, Q. Zhang, and F. Feng. 2019. NLRP3 inflammasome activation involved in LPS and coal tar pitch extract-induced malignant transformation of human bronchial epithelial cells. Environmental Toxicology 34 (5): 585–593.
pubmed: 30698909
doi: 10.1002/tox.22725
pmcid: 30698909
Moossavi, M., N. Parsamanesh, A. Bahrami, S.L. Atkin, and A. Sahebkar. 2018. Role of the NLRP3 inflammasome in cancer. Molecular Cancer 17 (1): 158.
pubmed: 30447690
pmcid: 6240225
doi: 10.1186/s12943-018-0900-3
Yang, Y., P.Y. Liu, W. Bao, S.J. Chen, F.S. Wu, and P.Y. Zhu. 2020. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer 20 (1): 28.
pubmed: 31924176
pmcid: 6954594
doi: 10.1186/s12885-019-6491-6
Teng, J.F., Q.B. Mei, X.G. Zhou, Y. Tang, R. Xiong, W.Q. Qiu, et al. 2020. Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-kappaB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers 12 (1).
Xie, J., B. Zhuan, H. Wang, Y. Wang, X. Wang, Q. Yuan, et al. 2019. Huaier extract suppresses non-small cell lung cancer progression through activating NLRP3-dependent pyroptosis. Anatomical Record (Hoboken, NJ : 2007).
Yao, M., X. Fan, B. Yuan, N. Takagi, S. Liu, X. Han, J. Ren, and J. Liu. 2019. Berberine inhibits NLRP3 inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complementary and Alternative Medicine 19 (1): 216.
pubmed: 31412862
pmcid: 6694465
doi: 10.1186/s12906-019-2615-4
Han, B., S. Li, Y. Lv, D. Yang, J. Li, Q. Yang, P. Wu, Z. Lv, and Z. Zhang. 2019. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1alpha/Nrf2 pathway. Food & Function 10 (9): 5555–5565.
doi: 10.1039/C9FO01152H
Karamitri, A., and R. Jockers. 2019. Melatonin in type 2 diabetes mellitus and obesity. Nature Reviews. Endocrinology 15 (2): 105–125.
pubmed: 30531911
doi: 10.1038/s41574-018-0130-1
pmcid: 30531911
Wu, H.-M., Q.-M. Xie, C.-C. Zhao, J. Xu, X.-Y. Fan, and G.-H. Fei. 2019. Melatonin biosynthesis restored by CpG oligodeoxynucleotides attenuates allergic airway inflammation via regulating NLRP3 inflammasome. Life Sciences 239: 117067.
pubmed: 31738882
doi: 10.1016/j.lfs.2019.117067
pmcid: 31738882
Lerner, A.B., Case, J.D. and Takahashi, Y. 1960. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry 235(7): 1992–1997.
Baltatu, O.C., S. Senar, L.A. Campos, and J. Cipolla-Neto. 2019. Cardioprotective melatonin: translating from proof-of-concept studies to therapeutic use. International Journal of Molecular Sciences 20 (18): 4342.
pmcid: 6770816
doi: 10.3390/ijms20184342
Ren, W., G. Liu, S. Chen, J. Yin, J. Wang, B. Tan, G. Wu, F.W. Bazer, Y. Peng, T. Li, R.J. Reiter, and Y. Yin. 2017. Melatonin signaling in T cells: functions and applications. Journal of Pineal Research 62 (3): e12394.
doi: 10.1111/jpi.12394
Reiter, R.J. 1991. Pineal Melatonin: Cell biology of its synthesis and of its physiological interactions*. Endocrine Reviews 12 (2): 151–180.
pubmed: 1649044
doi: 10.1210/edrv-12-2-151
pmcid: 1649044
Acuña-Castroviejo, D., G. Escames, C. Venegas, M.E. Díaz-Casado, E. Lima-Cabello, L.C. López, S. Rosales-Corral, D.X. Tan, and R.J. Reiter. 2014. Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences 71 (16): 2997–3025.
pubmed: 24554058
doi: 10.1007/s00018-014-1579-2
pmcid: 24554058
Kennaway, D.J. 2017. Are the proposed benefits of melatonin-rich foods too hard to swallow? Critical Reviews in Food Science and Nutrition 57 (5): 958–962.
pubmed: 25975843
doi: 10.1080/10408398.2014.962686
pmcid: 25975843
Lu, K.-H., R.-C. Lin, J.-S. Yang, W.-E. Yang, R.J. Reiter, and S.-F. Yang. 2019. Molecular and cellular mechanisms of melatonin in osteosarcoma. Cells 8 (12): 1618.
pmcid: 6952995
doi: 10.3390/cells8121618
Vijayalaxmi, C.R. Thomas Jr., R.J. Reiter, and T.S. Herman. 2002. Melatonin: from basic research to cancer treatment clinics. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 20 (10): 2575–2601.
doi: 10.1200/JCO.2002.11.004
Tan, D.-x., L.C. Manchester, R.J. Reiter, W. Qi, M.A. Hanes, and N.J. Farley. 1999. High physiological levels of melatonin in the bile of mammals. Life Sciences 65 (23): 2523–2529.
pubmed: 10622237
doi: 10.1016/S0024-3205(99)00519-6
pmcid: 10622237
Wetterberg, L. 1999. Melatonin and clinical application. Reproduction, Nutrition, Development 39 (3): 367–382.
pubmed: 10420439
doi: 10.1051/rnd:19990309
pmcid: 10420439
Luo, G.P., Z. Jian, R.Y. Ma, Z.Z. Cao, Y. Zhu, Y. Zhu, F.Q. Tang, and Y.B. Xiao. 2018. Melatonin alleviates hypoxia-induced cardiac apoptosis through PI3K/Akt pathway. International Journal of Clinical and Experimental Pathology 11 (12): 5840–5849.
pubmed: 31949670
pmcid: 6963099
Shokrzadeh, M., and N. Ghassemi-Barghi. 2018. Melatonin loading chitosan-tripolyphosphate nanoparticles: application in attenuating etoposide-induced genotoxicity in HepG2 cells. Pharmacology 102 (1-2): 74–80.
pubmed: 29940567
doi: 10.1159/000489667
pmcid: 29940567
Romic, M.D., A. Susac, J. Lovric, B. Cetina-Cizmek, J. Filipovic-Grcic, and A. Hafner. 2019. Evaluation of stability and in vitro wound healing potential of melatonin loaded (lipid enriched) chitosan based microspheres. Acta Pharmaceutica (Zagreb, Croatia) 69 (4): 635–648.
doi: 10.2478/acph-2019-0049
Sanchez, A.B., B. Clares, M.J. Rodriguez-Lagunas, M.J. Fabrega, and A.C. Calpena. 2020. Study of melatonin as preventive agent of gastrointestinal damage induced by sodium diclofenac. Cells 9 (1).
Fusco, R., R. Siracusa, R. D'Amico, A.F. Peritore, M. Cordaro, E. Gugliandolo, et al. 2019. Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: an evaluation of pain, oxidative stress, and inflammation. Antioxidants (Basel, Switzerland) 8 (12).
Hajam, Y.A., and S. Rai. 2019. Melatonin and insulin modulates the cellular biochemistry, histoarchitecture and receptor expression during hepatic injury in diabetic rats. Life Sciences 239: 117046.
pubmed: 31730869
doi: 10.1016/j.lfs.2019.117046
pmcid: 31730869
Balmik, A.A., R. Das, A. Dangi, N.V. Gorantla, U.K. Marelli, and S. Chinnathambi. 1864. Melatonin interacts with repeat domain of tau to mediate disaggregation of paired helical filaments. Biochimica et Biophysica Acta, General Subjects 2020 (3): 129467.
doi: 10.1016/j.bbagen.2019.129467
Kandemir, Y.B., V. Tosun, and U. Guntekin. 2019. Melatonin protects against streptozotocin-induced diabetic cardiomyopathy through the mammalian target of rapamycin (mTOR) signaling pathway. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 28 (9): 1171–1177.
doi: 10.17219/acem/103799
Hasan, M., M.A. Marzouk, S. Adhikari, T.D. Wright, B.P. Miller, M.D. Matossian, S. Elliott, M. Wright, M. Alzoubi, B.M. Collins-Burow, M.E. Burow, U. Holzgrabe, D.P. Zlotos, R.E. Stratford, and P.A. Witt-Enderby. 2019. Pharmacological, mechanistic, and pharmacokinetic assessment of novel melatonin-tamoxifen drug conjugates as breast cancer drugs. Molecular Pharmacology 96 (2): 272–296.
pubmed: 31221824
pmcid: 6666385
doi: 10.1124/mol.119.116202
Chen, X., Z. Xi, H. Liang, Y. Sun, Z. Zhong, B. Wang, L. Bian, and Q. Sun. 2019. Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCalpha/Nrf2/HO-1 signaling in vitro. Frontiers in Neuroscience 13: 760.
pubmed: 31404262
pmcid: 6669962
doi: 10.3389/fnins.2019.00760
Dube, K., K. Dhanabalan, R. Salie, M. Blignaut, B. Huisamen, and A. Lochner. 2019. Melatonin has profound effects on mitochondrial dynamics in myocardial ischaemia/reperfusion. Heliyon 5 (10): e02659.
pubmed: 31720456
pmcid: 6838907
doi: 10.1016/j.heliyon.2019.e02659
Khatoon, R., M.Z. Rasheed, M. Rawat, M.M. Alam, H. Tabassum, and S. Parvez. 2019. Effect of melatonin on Abeta42 induced changes in the mitochondrial function related to Alzheimer’s disease in Drosophila melanogaster. Neuroscience Letters 711: 134376.
pubmed: 31325578
doi: 10.1016/j.neulet.2019.134376
pmcid: 31325578
Lu, K., X. Liu, and W. Guo. 2019. Melatonin attenuates inflammation-related venous endothelial cells apoptosis through modulating the MST1-MIEF1 pathway. Journal of Cellular Physiology 234 (12): 23675–23684.
pubmed: 31169304
doi: 10.1002/jcp.28935
pmcid: 31169304
Zhao, Q., W. Wang, and J. Cui. 2019. Melatonin enhances TNF-alpha-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell International 19: 58.
pubmed: 30923460
pmcid: 6419493
doi: 10.1186/s12935-019-0777-2
Fernandez-Gil, B.I., A. Guerra-Librero, Y.Q. Shen, J. Florido, L. Martinez-Ruiz, S. Garcia-Lopez, et al. 2019. Melatonin enhances cisplatin and radiation cytotoxicity in head and neck squamous cell carcinoma by stimulating mitochondrial ROS generation, apoptosis, and autophagy. Oxidative Medicine and Cellular Longevity 2019: 7187128.
pubmed: 30944696
pmcid: 6421819
doi: 10.1155/2019/7187128
Zhang, J., X. Lu, M. Liu, H. Fan, H. Zheng, S. Zhang, et al. 2019. Melatonin inhibits inflammasome-associated activation of endothelium and macrophages attenuating pulmonary arterial hypertension. Cardiovascular Research.
Alvarez-Artime, A., R. Cernuda-Cernuda, N. Francisco Artime, V. Cepas, P. Gonzalez-Menendez, S. Fernadez-Vega, et al. 2020. Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. International Journal of Molecular Sciences 21 (2).
Park, J.H., I. Seo, H.M. Shim, and H. Cho. 2019. Melatonin ameliorates SGLT2 inhibitor-induced diabetic ketoacidosis by inhibiting lipolysis and hepatic ketogenesis in type 2 diabetic mice. Journal of Pineal Research: e12623.
Ge, W.B., L.F. Xiao, H.W. Duan, Z.S. Li, Y.T. Jiang, S.S. Yang, J.J. Hu, Y. Zhang, and X.X. Zhao. 2019. Melatonin protects against lipopolysaccharide-induced epididymitis in sheep epididymal epithelial cells in vitro. Immunology Letters 214: 45–51.
pubmed: 31491433
doi: 10.1016/j.imlet.2019.09.001
pmcid: 31491433
Ma, Y., Q. Zhao, Y. Shao, M.Z. Cao, M. Zhao, and D. Wang. 2019. Melatonin inhibits the inflammation and apoptosis in rats with diabetic retinopathy via MAPK pathway. European Review for Medical and Pharmacological Sciences 23 (3 Suppl): 1–8.
pubmed: 31389568
pmcid: 31389568
Zhang, J., L. Wang, W. Xie, S. Hu, H. Zhou, P. Zhu, and H. Zhu. 2020. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: a new mechanism involving BAP31 upregulation and MAPK-ERK pathway. Journal of Cellular Physiology 235 (3): 2847–2856.
pubmed: 31535369
doi: 10.1002/jcp.29190
pmcid: 31535369
Zhang, Y., F. He, Z. Chen, Q. Su, M. Yan, Q. Zhang, J. Tan, L. Qian, and Y. Han. 2019. Melatonin modulates IL-1beta-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging 11 (22): 10499–10512.
pubmed: 31772145
pmcid: 6914432
doi: 10.18632/aging.102472
Liu, Z.J., Y.Y. Ran, S.Y. Qie, W.J. Gong, F.H. Gao, Z.T. Ding, and J.N. Xi. 2019. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neuroscience & Therapeutics 25 (12): 1353–1362.
doi: 10.1111/cns.13261
Cheikh, M., K. Makhlouf, K. Ghattassi, A. Graja, S. Ferchichi, C. Kallel, et al. 2019. Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes. Chronobiology International: 1–12.
Jin, H., Q. Wang, J. Wu, X. Han, T. Qian, Z. Zhang, J. Wang, X. Pan, A. Wu, and X. Wang. 2019. Baicalein inhibits the IL-1β-induced inflammatory response in nucleus pulposus cells and attenuates disc degeneration in vivo. Inflammation 42 (3): 1032–1044.
pubmed: 30729381
doi: 10.1007/s10753-019-00965-8
pmcid: 30729381
Radovic, M., L. Ristic, D. Krtinic, M. Rancic, V. Nickovic, Z.N. Vujnovic Zivkovic, J.B. Zivkovic, M.V. Mirkovic, D.R. Toskic, and D. Sokolovic. 2019. Melatonin treatment prevents carbon tetrachloride-induced acute lung injury in rats by mitigating tissue antioxidant capacity and inflammatory response. Bratislavské Lekárske Listy 120 (7): 527–531.
pubmed: 31602989
pmcid: 31602989
de Farias, T., M.M. Cruz, R. de Sa, I. Severi, J. Perugini, M. Senzacqua, et al. 2019. Melatonin supplementation decreases hypertrophic obesity and inflammation induced by high-fat diet in mice. Frontiers in Endocrinology 10: 750.
pubmed: 31749764
pmcid: 6848267
doi: 10.3389/fendo.2019.00750
DePalma, M.J., J.M. Ketchum, and T. Saullo. 2011. What is the source of chronic low back pain and does age play a role? Pain Medicine 12 (2): 224–233.
pubmed: 21266006
doi: 10.1111/j.1526-4637.2010.01045.x
pmcid: 21266006
Berlin, K., L. Gerhardsson, J. Börjesson, E. Lindh, N. Lundström, A. Schütz, S. Skerfving, and C. Edling. 1995. Lead intoxication caused by skeletal disease. Scandinavian Journal of Work, Environment & Health 21: 296–300.
doi: 10.5271/sjweh.42
Colombier, P., J. Clouet, O. Hamel, L. Lescaudron, and J. Guicheux. 2014. The lumbar intervertebral disc: from embryonic development to degeneration. Joint, Bone, Spine 81 (2): 125–129.
doi: 10.1016/j.jbspin.2013.07.012
Adams, M.A., P. Dolan, and D.S. McNally. 2009. The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biology 28 (7): 384–389.
pubmed: 19586615
doi: 10.1016/j.matbio.2009.06.004
pmcid: 19586615
Zhou, J., J. Sun, D.Z. Markova, S. Li, C.K. Kepler, J. Hong, Y. Huang, W. Chen, K. Xu, F. Wei, and W. Ye. 2019. MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells. Life Sciences 221: 274–283.
pubmed: 30797016
doi: 10.1016/j.lfs.2019.02.041
pmcid: 30797016
Risbud, M.V., and I.M. Shapiro. 2014. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews Rheumatology 10 (1): 44–56.
pubmed: 24166242
doi: 10.1038/nrrheum.2013.160
pmcid: 24166242
Wu, X., S. Li, K. Wang, W. Hua, S. Li, Y. Song, Y. Zhang, S. Yang, and C. Yang. 2019. TNF-α regulates ITGβ1 and SYND4 expression in nucleus pulposus cells: activation of FAK/PI3K signaling. Inflammation. 42 (5): 1575–1584.
pubmed: 31111299
doi: 10.1007/s10753-019-01019-9
pmcid: 31111299
Hasmann, M., and I. Schemainda. 2003. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research 63 (21): 7436–7442.
pubmed: 14612543
pmcid: 14612543
Shi, C., H. Wu, D. Du, H.-J. Im, Y. Zhang, B. Hu, et al. 2018. Nicotinamide phosphoribosyltransferase inhibitor APO866 prevents IL-1β-induced human nucleus pulposus cell degeneration via autophagy. Cellular Physiology and Biochemistry 49 (6): 2463–2482.
pubmed: 30261504
doi: 10.1159/000493843
pmcid: 30261504
Huang, Y., Y. Peng, J. Sun, S. Li, J. Hong, J. Zhou, et al. 2020. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation: 1–14.
Krieg, A.M., A.-K. Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, G.A. Koretzky, and D.M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374 (6522): 546–549.
pubmed: 7700380
doi: 10.1038/374546a0
pmcid: 7700380
Sabatel, C., C. Radermecker, L. Fievez, G. Paulissen, S. Chakarov, C. Fernandes, S. Olivier, M. Toussaint, D. Pirottin, X. Xiao, P. Quatresooz, J.C. Sirard, D. Cataldo, L. Gillet, H. Bouabe, C.J. Desmet, F. Ginhoux, T. Marichal, and F. Bureau. 2017. Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46 (3): 457–473.
pubmed: 28329706
doi: 10.1016/j.immuni.2017.02.016
pmcid: 28329706
Jain, V.V., K. Kitagaki, T. Businga, I. Hussain, C. George, P. O'Shaughnessy, and J.N. Kline. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. The Journal of Allergy and Clinical Immunology 110 (6): 867–872.
pubmed: 12464952
doi: 10.1067/mai.2002.129371
pmcid: 12464952
Chiang, D.-J., Y.-L. Ye, W.-L. Chen, Y.-L. Lee, N.-Y. Hsu, and B.-L. Chiang. 2003. Ribavirin or CpG DNA sequence–modulated dendritic cells decrease the IgE level and airway inflammation. American Journal of Respiratory and Critical Care Medicine 168 (5): 575–580.
pubmed: 12941656
doi: 10.1164/rccm.2205005
pmcid: 12941656
Li, Y., J. Li, S. Li, Y. Li, X. Wang, B. Liu, Q. Fu, and S. Ma. 2015. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicology and Applied Pharmacology 286 (1): 53–63.
pubmed: 25791922
doi: 10.1016/j.taap.2015.03.010
pmcid: 25791922
Beeh, K.-M., F. Kanniess, F. Wagner, C. Schilder, I. Naudts, A. Hammann-Haenni, J. Willers, H. Stocker, P. Mueller, M.F. Bachmann, and W.A. Renner. 2013. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. The Journal of Allergy and Clinical Immunology 131 (3): 866–874.
pubmed: 23384679
doi: 10.1016/j.jaci.2012.12.1561
pmcid: 23384679
Casale, T., J. Cole, E. Beck, C. Vogelmeier, J. Willers, C. Lassen, et al. 2015. CYT 003, a TLR 9 agonist, in persistent allergic asthma–a randomized placebo-controlled Phase 2b study. Allergy. 70 (9): 1160–1168.
pubmed: 26042362
doi: 10.1111/all.12663
pmcid: 26042362
Klimek, L., J. Willers, A. Hammann-Haenni, O. Pfaar, H. Stocker, P. Mueller, W.A. Renner, and M.F. Bachmann. 2011. Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clinical and Experimental Allergy 41 (9): 1305–1312.
pubmed: 21672053
doi: 10.1111/j.1365-2222.2011.03783.x
pmcid: 21672053
T Lubka R, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. 2016.
Li, C., W. Yin, N. Yu, D. Zhang, H. Zhao, J. Liu, J. Liu, Y. Pan, and L. Lin. 2019. miR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome. Oral Diseases 25 (8): 2030–2039.
pubmed: 31529565
doi: 10.1111/odi.13198
pmcid: 31529565
Ockene, I.S., and N.H. Miller. 1997. Cigarette smoking, cardiovascular disease, and stroke: a statement for healthcare professionals from the American Heart Association. Circulation 96 (9): 3243–3247.
pubmed: 9386200
doi: 10.1161/01.CIR.96.9.3243
pmcid: 9386200
Pepine, C.J., J.D. Schlaifer, G.J. Mancini, B. Pitt, B.J. O'Neill, and H.E. Haber. 1998. Influence of smoking status on progression of endothelial dysfunction. Clinical Cardiology 21 (5): 331–334.
pubmed: 9595215
doi: 10.1002/clc.4960210506
pmcid: 9595215
Zeiher, A.M., V. Schächinger, and J. Minners. 1995. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 92 (5): 1094–1100.
pubmed: 7648652
doi: 10.1161/01.CIR.92.5.1094
pmcid: 7648652
Zhang, Y., X. Liu, X. Bai, Y. Lin, Z. Li, J. Fu, M. Li, T. Zhao, H. Yang, R. Xu, J. Li, J. Ju, B. Cai, C. Xu, and B. Yang. 2018. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. Journal of Pineal Research 64 (2): e12449.
doi: 10.1111/jpi.12449
Malhi GS, Mann JJ. Seminar Depression. 2018.
Lim, G.Y., W.W. Tam, Y. Lu, C.S. Ho, M.W. Zhang, and R.C. Ho. 2018. Prevalence of depression in the community from 30 countries between 1994 and 2014. Scientific Reports 8 (1): 1–10.
Johnston, K.M., L.C. Powell, I.M. Anderson, S. Szabo, and S. Cline. 2019. The burden of treatment-resistant depression: a systematic review of the economic and quality of life literature. Journal of Affective Disorders 242: 195–210.
pubmed: 30195173
doi: 10.1016/j.jad.2018.06.045
pmcid: 30195173
Cosker, E., T. Schwitzer, N. Ramoz, F. Ligier, L. Lalanne, P. Gorwood, R. Schwan, and V. Laprévote. 2018. The effect of interactions between genetics and cannabis use on neurocognition. A review. Progress in Neuro-Psychopharmacology & Biological Psychiatry 82: 95–106.
doi: 10.1016/j.pnpbp.2017.11.024
Thase, M.E. 2016. Managing medical comorbidities in patients with depression to improve prognosis. The Journal of Clinical Psychiatry 77: 22–27.
pubmed: 26829434
doi: 10.4088/JCP.14077su1c.04
pmcid: 26829434
Mistry, P., and M.J. Kaplan. 2017. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clinical Immunology 185: 59–73.
pubmed: 27519955
doi: 10.1016/j.clim.2016.08.010
pmcid: 27519955
Dedong, H., Z. Feiyan, S. Jie, L. Xiaowei, and W. Shaoyang. 2019. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunology Letters 210: 33–39.
pubmed: 31004679
doi: 10.1016/j.imlet.2019.04.002
pmcid: 31004679
Kahlenberg, J.M., S.G. Thacker, C.C. Berthier, C.D. Cohen, M. Kretzler, and M.J. Kaplan. 2011. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. The Journal of Immunology. 187 (11): 6143–6156.
pubmed: 22058412
doi: 10.4049/jimmunol.1101284
pmcid: 22058412
Fu, R., C. Guo, S. Wang, Y. Huang, O. Jin, H. Hu, J. Chen, B. Xu, M. Zhou, J. Zhao, S.S.J. Sung, H. Wang, F. Gaskin, N. Yang, and S.M. Fu. 2017. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis & Rheumatology 69 (8): 1636–1646.
doi: 10.1002/art.40155
Ma, Z.-Z., H.-S. Sun, J.-C. Lv, L. Guo, and Q.-R. Yang. 2018. Expression and clinical significance of the NEK7-NLRP3 inflammasome signaling pathway in patients with systemic lupus erythematosus. Journal of Inflammation 15 (1): 16.
pubmed: 30202244
pmcid: 6122698
doi: 10.1186/s12950-018-0192-9
Moniruzzaman, M., I. Ghosal, D. Das, and S.B. Chakraborty. 2018. Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biological Research 51: 17.
pubmed: 29891016
pmcid: 5996524
doi: 10.1186/s40659-018-0168-5
Bonomini, F., M. Dos Santos, F.V. Veronese, and R. Rezzani. 2019. NLRP3 Inflammasome modulation by melatonin supplementation in chronic pristane-induced lupus nephritis. International Journal of Molecular Sciences 20 (14): 3466.
pmcid: 6678949
doi: 10.3390/ijms20143466
Dai, W., H. Huang, L. Si, S. Hu, L. Zhou, L. Xu, and Y. Deng. 2019. Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway. International Journal of Molecular Medicine 44 (4): 1197–1204.
pubmed: 31432108
pmcid: 6713408
Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine 352 (16): 1685–1695.
pubmed: 15843671
doi: 10.1056/NEJMra043430
Zhang, H.M., and Y. Zhang. 2014. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. Journal of Pineal Research 57 (2): 131–146.
pubmed: 25060102
doi: 10.1111/jpi.12162
pmcid: 25060102
Ma, S., J. Chen, J. Feng, R. Zhang, M. Fan, D. Han, X. Li, C. Li, J. Ren, Y. Wang, and F. Cao. 2018. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxidative Medicine and Cellular Longevity 2018: 1–12.
Campagnolo, D.I., J.A. Bartlett, and S.E. Keller. 2000. Influence of neurological level on immune function following spinal cord injury: a review. The Journal of Spinal Cord Medicine 23 (2): 121–128.
pubmed: 10914353
doi: 10.1080/10790268.2000.11753519
Bareyre, F.M., and M.E. Schwab. 2003. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends in Neurosciences 26 (10): 555–563.
pubmed: 14522149
doi: 10.1016/j.tins.2003.08.004
Di Giovanni, S., S.M. Knoblach, C. Brandoli, S.A. Aden, E.P. Hoffman, and A.I. Faden. 2003. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Annals of Neurology 53 (4): 454–468.
pubmed: 12666113
doi: 10.1002/ana.10472
pmcid: 12666113
Gris, D., E.F. Hamilton, and L.C. Weaver. 2008. The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Experimental Neurology 211 (1): 259–270.
pubmed: 18384773
doi: 10.1016/j.expneurol.2008.01.033
pmcid: 18384773
Yuan, J., and B.A. Yankner. 2000. Apoptosis in the nervous system. Nature. 407 (6805): 802–809.
pubmed: 11048732
doi: 10.1038/35037739
pmcid: 11048732
Xu, G., D. Shi, Z. Zhi, R. Ao, and B. Yu. 2019. Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. Journal of Cellular Biochemistry 120 (4): 5183–5192.
pubmed: 30257055
doi: 10.1002/jcb.27794
pmcid: 30257055
Loi, M., and M. Molinari. 2020. Mechanistic insights in recov-ER-phagy: micro-ER-phagy to recover from stress. Autophagy. 16 (2): 385–386.
pubmed: 31961258
pmcid: 6984597
doi: 10.1080/15548627.2019.1709767
Ishibashi, T., S. Morita, S. Kishimoto, S. Uraki, K. Takeshima, Y. Furukawa, H. Inaba, H. Ariyasu, H. Iwakura, H. Furuta, M. Nishi, F.R. Papa, and T. Akamizu. 2020. nAChR signaling regulates IRE1alpha activation to protect beta cells against terminal unfolded protein response under irremediable ER stress. Journal of Diabetes Investigation. 11: 801–813.
pubmed: 31925927
pmcid: 7378412
doi: 10.1111/jdi.13211
Huang, Y., Y. Li, Q. Liu, J. Zhang, Z. Zhang, T. Wu, et al. 2020. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochemical and Biophysical Research Communications.
Roy, A., and A. Kumar. 2019. ER Stress and unfolded protein response in cancer cachexia. Cancers 11 (12).
Oslowski Christine, M., T. Hara, B. O’Sullivan-Murphy, K. Kanekura, S. Lu, M. Hara, et al. 2012. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metabolism 16 (2): 265–273.
pubmed: 22883234
pmcid: 3418541
doi: 10.1016/j.cmet.2012.07.005
Kahles, F., C. Meyer, J. Möllmann, S. Diebold, H.M. Findeisen, C. Lebherz, et al. 2014. GLP-1 Secretion is increased by inflammatory stimuli in an IL-6–dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes. 63 (10): 3221–3229.
pubmed: 24947356
doi: 10.2337/db14-0100
pmcid: 24947356
Hu, X., D. Li, J. Wang, J. Guo, Y. Li, Y. Cao, N. Zhang, and Y. Fu. 2018. Melatonin inhibits endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in lipopolysaccharide-induced endometritis in mice. International Immunopharmacology 64: 101–109.
pubmed: 30170255
doi: 10.1016/j.intimp.2018.08.028
pmcid: 30170255
Xu, F., J.Y. Zhong, X. Lin, S.K. Shan, G. Bei, M.H. Zheng, et al. 2020. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. Journal of Pineal Research: e12631.
Press, V.G., A.S. Cifu, and S.R. White. 2017. Screening for chronic obstructive pulmonary disease. Jama. 318 (17): 1702–1703.
pubmed: 29114819
doi: 10.1001/jama.2017.15782
Eapen, M.S., S. Myers, E.H. Walters, and S.S. Sohal. 2017. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Review of Respiratory Medicine 11 (10): 827–839.
pubmed: 28743228
doi: 10.1080/17476348.2017.1360769
Martínez, G.J., D.S. Celermajer, and S. Patel. 2018. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 269: 262–271.
pubmed: 29352570
doi: 10.1016/j.atherosclerosis.2017.12.027
Sun, X., H. Hao, Q. Han, X. Song, J. Liu, L. Dong, W. Han, and Y. Mu. 2017. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats. Stem Cell Research & Therapy 8 (1): 241.
doi: 10.1186/s13287-017-0668-1
Yu, G., Z. Bai, Z. Chen, H. Chen, G. Wang, G. Wang, and Z. Liu. 2017. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. International Immunopharmacology 43: 203–209.
pubmed: 28038382
doi: 10.1016/j.intimp.2016.12.022
Colarusso, C., M. Terlizzi, A. Molino, A. Pinto, and R. Sorrentino. 2017. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget 8 (47): 81813–81824.
pubmed: 29137224
pmcid: 5669850
doi: 10.18632/oncotarget.17850
Eltom, S., M.G. Belvisi, C.S. Stevenson, S.A. Maher, E. Dubuis, K.A. Fitzgerald, et al. 2014. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One 9 (11).
Zou, Y., X. Chen, J. Liu, D. Bo Zhou, X. Kuang, J. Xiao, et al. 2017. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters. International Journal of Chronic Obstructive Pulmonary Disease 12: 1247.
pubmed: 28490868
pmcid: 5413485
doi: 10.2147/COPD.S131877
J-w, Hwang. 2013. Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radical Biology & Medicine 61: 95–110.
doi: 10.1016/j.freeradbiomed.2013.03.015
Li, Y., P. Wang, X. Yang, W. Wang, J. Zhang, Y. He, W. Zhang, T. Jing, B. Wang, and R. Lin. 2016. SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells. Molecular Immunology 77: 148–156.
pubmed: 27505710
doi: 10.1016/j.molimm.2016.07.018
pmcid: 27505710
Peng, Z., W. Zhang, J. Qiao, and B. He. 2018. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD. International Immunopharmacology 62: 23–28.
pubmed: 29990691
doi: 10.1016/j.intimp.2018.06.033
Hofbauer LC, editor. Osteoporosis: now and the future. 15th European Congress of Endocrinology; 2013: BioScientifica.
Krassas, G., and P. Papadopoulou. 2001. Oestrogen action on bone cells. Journal of Musculoskeletal & Neuronal Interactions 2 (2): 143–152.
Xu, Y., H. Sheng, Q. Bao, Y. Wang, J. Lu, and X. Ni. 2016. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression-and anxiety-like behavior and hippocampal inflammation in mice. Brain, Behavior, and Immunity 56: 175–186.
pubmed: 26928197
doi: 10.1016/j.bbi.2016.02.022
Hamblin, M.R. 2016. Shining light on the head: photobiomodulation for brain disorders. BBA Clinical. 6: 113–124.
pubmed: 27752476
pmcid: 5066074
doi: 10.1016/j.bbacli.2016.09.002
Mansoori, M.N., P. Shukla, M. Kakaji, A.M. Tyagi, K. Srivastava, M. Shukla, M. Dixit, J. Kureel, S. Gupta, and D. Singh. 2016. IL-18BP is decreased in osteoporotic women: prevents inflammasome mediated IL-18 activation and reduces Th17 differentiation. Scientific Reports 6: 33680.
pubmed: 27649785
pmcid: 5030484
doi: 10.1038/srep33680
Xu, L., L. Zhang, Z. Wang, C. Li, S. Li, L. Li, Q. Fan, and L. Zheng. 2018. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcified Tissue International 103 (4): 400–410.
pubmed: 29804160
doi: 10.1007/s00223-018-0428-y
Connolly, E.S., Jr., A.A. Rabinstein, J.R. Carhuapoma, C.P. Derdeyn, J. Dion, R.T. Higashida, et al. 2012. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 43 (6): 1711–1737.
pubmed: 22556195
doi: 10.1161/STR.0b013e3182587839
Chen, S., Q. Ma, P.R. Krafft, Q. Hu, W. Rolland II, P. Sherchan, J. Zhang, J. Tang, and J.H. Zhang. 2013. P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiology of Disease 58: 296–307.
pubmed: 23816751
pmcid: 3771387
doi: 10.1016/j.nbd.2013.06.011
Finkel, T. 2011. Signal transduction by reactive oxygen species. The Journal of Cell Biology 194 (1): 7–15.
pubmed: 21746850
pmcid: 3135394
doi: 10.1083/jcb.201102095
Murphy, M.P. 2009. How mitochondria produce reactive oxygen species. The Biochemical Journal 417 (1): 1–13.
pubmed: 19061483
doi: 10.1042/BJ20081386
Li, J., J. Chen, H. Mo, J. Chen, C. Qian, F. Yan, C. Gu, Q. Hu, L. Wang, and G. Chen. 2016. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Molecular Neurobiology 53 (4): 2668–2678.
pubmed: 26143258
doi: 10.1007/s12035-015-9318-8
pmcid: 26143258
Li, J., J. Lu, Y. Mi, Z. Shi, C. Chen, J. Riley, and C. Zhou. 2014. Voltage-dependent anion channels (VDACs) promote mitophagy to protect neuron from death in an early brain injury following a subarachnoid hemorrhage in rats. Brain Research 1573: 74–83.
pubmed: 24880016
doi: 10.1016/j.brainres.2014.05.021
pmcid: 24880016
Wen X, Klionsky DJ, editors. At a glance: a history of autophagy and cancer. Seminars in cancer biology; 2019: Elsevier.
Yang, Y., and D.J. Klionsky. 2020. Autophagy and disease: unanswered questions. Cell Death and Differentiation.
Galluzzi, L., and D.R. Green. 2019. Autophagy-independent functions of the autophagy machinery. Cell. 177 (7): 1682–1699.
pubmed: 31199916
pmcid: 7173070
doi: 10.1016/j.cell.2019.05.026
Hazari, Y., J.M. Bravo-San Pedro, C. Hetz, L. Galluzzi, and G. Kroemer. 2020. Autophagy in hepatic adaptation to stress. Journal of Hepatology 72 (1): 183–196.
pubmed: 31849347
doi: 10.1016/j.jhep.2019.08.026
pmcid: 31849347
Liu, L., X. Liao, H. Wu, Y. Li, Y. Zhu, and Q. Chen. 2020. Mitophagy and its contribution to metabolic and aging associated disorders. Antioxidants & Redox Signaling 32: 906–927.
doi: 10.1089/ars.2019.8013
Cao, S., S. Shrestha, J. Li, X. Yu, J. Chen, F. Yan, et al. 2017. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Scientific Reports 7 (1): 1–11.
doi: 10.1038/s41598-016-0028-x
Liu, W.-C., X. Wang, X. Zhang, X. Chen, and X. Jin. 2017. Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Frontiers in Aging Neuroscience 9: 165.
pubmed: 28596733
pmcid: 5442221
doi: 10.3389/fnagi.2017.00165
Cao, Z., Y. Fang, Y. Lu, D. Tan, C. Du, Y. Li, et al. 2017. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. Journal of Pineal Research 62 (3): e12389.
doi: 10.1111/jpi.12389
Dong, Y., C. Fan, W. Hu, S. Jiang, Z. Ma, X. Yan, C. Deng, S. di, Z. Xin, G. Wu, Y. Yang, R.J. Reiter, and G. Liang. 2016. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP 3 inflammasome and apoptosis signaling. Journal of Pineal Research 60 (3): 253–262.
pubmed: 26639408
doi: 10.1111/jpi.12300
pmcid: 26639408
Fernández-Gil, B., A.E.A. Moneim, F. Ortiz, Y.-Q. Shen, V. Soto-Mercado, M. Mendivil-Perez, et al. 2017. Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS One 12 (4).
García, J.A., H. Volt, C. Venegas, C. Doerrier, G. Escames, L.C. López, and D. Acuña-Castroviejo. 2015. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. The FASEB Journal. 29 (9): 3863–3875.
pubmed: 26045547
doi: 10.1096/fj.15-273656
pmcid: 26045547
Liu, Z., L. Gan, Y. Xu, D. Luo, Q. Ren, S. Wu, and C. Sun. 2017. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. Journal of Pineal Research 63 (1): e12414.
doi: 10.1111/jpi.12414
Ortiz, F., D. Acuña-Castroviejo, C. Doerrier, J.C. Dayoub, L.C. López, C. Venegas, J.A. García, A. López, H. Volt, M. Luna-Sánchez, and G. Escames. 2015. Melatonin blunts the mitochondrial/NLRP 3 connection and protects against radiation-induced oral mucositis. Journal of Pineal Research 58 (1): 34–49.
pubmed: 25388914
doi: 10.1111/jpi.12191
pmcid: 25388914
Rahim, I., B. Djerdjouri, R.K. Sayed, M. Fernández-Ortiz, B. Fernández-Gil, A. Hidalgo-Gutiérrez, L.C. López, G. Escames, R.J. Reiter, and D. Acuña-Castroviejo. 2017. Melatonin administration to wild-type mice and nontreated NLRP 3 mutant mice share similar inhibition of the inflammatory response during sepsis. Journal of Pineal Research 63 (1): e12410.
doi: 10.1111/jpi.12410
Shim, D.-W., H.J. Shin, J.-W. Han, Y.-E. Ji, C.-H. Jang, S. Koppula, T.B. Kang, and K.H. Lee. 2015. A novel synthetic derivative of melatonin, 5-hydroxy-2’-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicology and Applied Pharmacology 284 (2): 227–235.
pubmed: 25689174
doi: 10.1016/j.taap.2015.02.006
pmcid: 25689174
Volt, H., J.A. García, C. Doerrier, M.E. Díaz-Casado, A. Guerra-Librero, L.C. López, G. Escames, J.A. Tresguerres, and D. Acuña-Castroviejo. 2016. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. Journal of Pineal Research 60 (2): 193–205.
pubmed: 26681113
doi: 10.1111/jpi.12303
pmcid: 26681113
Zhang, Y., X. Li, J.J. Grailer, N. Wang, M. Wang, J. Yao, R. Zhong, G.F. Gao, P.A. Ward, D.X. Tan, and X. Li. 2016. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. Journal of Pineal Research 60 (4): 405–414.
pubmed: 26888116
doi: 10.1111/jpi.12322
pmcid: 26888116