LY6K-AS lncRNA is a lung adenocarcinoma prognostic biomarker and regulator of mitotic progression.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
04 2021
Historique:
received: 10 11 2020
accepted: 03 02 2021
revised: 28 01 2021
pubmed: 7 3 2021
medline: 21 10 2021
entrez: 6 3 2021
Statut: ppublish

Résumé

Recent advances in genomics unraveled several actionable mutational drivers in lung cancer, leading to promising therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. However, the tumors' acquired resistance to the newly-developed as well as existing therapies restricts life quality improvements. Therefore, we investigated the noncoding portion of the human transcriptome in search of alternative actionable targets. We identified an antisense transcript, LY6K-AS, with elevated expression in lung adenocarcinoma (LUAD) patients, and its higher expression in LUAD patients predicts poor survival outcomes. LY6K-AS abrogation interfered with the mitotic progression of lung cancer cells resulting in unfaithful chromosomal segregation. LY6K-AS interacts with and stabilizes 14-3-3 proteins to regulate the transcription of kinetochore and mitotic checkpoint proteins. We also show that LY6K-AS regulates the levels of histone H3 lysine 4 trimethylation (H3K4me3) at the promoters of kinetochore members. Cisplatin treatment and LY6K-AS silencing affect many common pathways enriched in cell cycle-related functions. LY6K-AS silencing affects the growth of xenografts derived from wildtype and cisplatin-resistant lung cancer cells. Collectively, these data indicate that LY6K-AS silencing is a promising therapeutic option for LUAD that inhibits oncogenic mitotic progression.

Identifiants

pubmed: 33674747
doi: 10.1038/s41388-021-01696-7
pii: 10.1038/s41388-021-01696-7
doi:

Substances chimiques

14-3-3 Proteins 0
Antigens, Ly 0
Biomarkers, Tumor 0
GPI-Linked Proteins 0
Histones 0
LY6K protein, human 0
RNA, Long Noncoding 0
histone H3 trimethyl Lys4 0
Cisplatin Q20Q21Q62J

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2463-2478

Références

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
pubmed: 30207593 doi: 10.3322/caac.21492
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.
doi: 10.3322/caac.21442
de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7:220–33.
pubmed: 30050761 pmcid: 6037963 doi: 10.21037/tlcr.2018.05.06
Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.
pubmed: 26291008 doi: 10.1097/JTO.0000000000000630
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257.
pubmed: 24874729 pmcid: 4047912 doi: 10.1038/cddis.2013.428
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.
pubmed: 27574741 doi: 10.1016/S0140-6736(16)30958-8
Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 2018;17:38.
pubmed: 29455650 pmcid: 5817870 doi: 10.1186/s12943-018-0777-1
Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 2018;24:47–53.
pubmed: 29360728 pmcid: 5785093 doi: 10.1097/PPO.0000000000000303
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.
pubmed: 28187290 pmcid: 5391692 doi: 10.1016/j.cell.2017.01.017
Kornienko AE, Dotter CP, Guenzl PM, Gisslinger H, Gisslinger B, Cleary C, et al. Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol. 2016;17:14.
pubmed: 26821746 pmcid: 4731934 doi: 10.1186/s13059-016-0873-8
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208.
pubmed: 25599403 pmcid: 4417758 doi: 10.1038/ng.3192
Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32:232–46.
pubmed: 18951091 doi: 10.1016/j.molcel.2008.08.022
Ohhata T, Senner CE, Hemberger M, Wutz A. Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice. Genes Dev. 2011;25:1702–15.
pubmed: 21852535 pmcid: 3165935 doi: 10.1101/gad.16997911
Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.
pubmed: 27070700 pmcid: 4831138 doi: 10.1016/j.ccell.2016.03.010
Akhade VS, Pal D, Kanduri C. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol. 2017;1008:47–74.
pubmed: 28815536 doi: 10.1007/978-981-10-5203-3_2
Wu H, Yang L, Chen LL. The diversity of long noncoding RNAs and their generation. Trends Genet. 2017;33:540–52.
pubmed: 28629949 doi: 10.1016/j.tig.2017.05.004
Subhash S, Mishra K, Akhade VS, Kanduri M, Mondal T, Kanduri C. H3K4me2 and WDR5 enriched chromatin interacting long non-coding RNAs maintain transcriptionally competent chromatin at divergent transcriptional units. Nucleic Acids Res. 2018;46:9384–9400.
pubmed: 30010961 pmcid: 6182144 doi: 10.1093/nar/gky635
Balbin OA, Malik R, Dhanasekaran SM, Prensner JR, Cao X, Wu YM, et al. The landscape of antisense gene expression in human cancers. Genome Res. 2015;25:1068–79.
pubmed: 26063736 pmcid: 4484389 doi: 10.1101/gr.180596.114
Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014;26:722–37.
pubmed: 25517750 doi: 10.1016/j.ccell.2014.09.014
Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.
pubmed: 23243023 doi: 10.1158/0008-5472.CAN-12-2850
Ali MM, Akhade VS, Kosalai ST, Subhash S, Statello L, Meryet-Figuiere M, et al. PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers. Nat Commun. 2018;9:883.
pubmed: 29491376 pmcid: 5830406 doi: 10.1038/s41467-018-03265-1
Marchese FP, Grossi E, Marin-Bejar O, Bharti SK, Raimondi I, Gonzalez J, et al. A long noncoding RNA regulates sister chromatid cohesion. Mol Cell. 2016;63:397–407.
pubmed: 27477908 pmcid: 5893147 doi: 10.1016/j.molcel.2016.06.031
White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol. 2014;15:429.
pubmed: 25116943 pmcid: 4156652 doi: 10.1186/s13059-014-0429-8
Ooi AT, Gower AC, Zhang KX, Vick JL, Hong L, Nagao B, et al. Molecular profiling of premalignant lesions in lung squamous cell carcinomas identifies mechanisms involved in stepwise carcinogenesis. Cancer Prev Res. 2014;7:487–95.
doi: 10.1158/1940-6207.CAPR-13-0372
Montes M, Nielsen MM, Maglieri G, Jacobsen A, Hojfeldt J, Agrawal-Singh S, et al. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Commun. 2015;6:6967.
pubmed: 25908244 doi: 10.1038/ncomms7967
Isaka T, Nestor AL, Takada T, Allison DC. Chromosomal variations within aneuploid cancer lines. J Histochem Cytochem. 2003;51:1343–53.
pubmed: 14500702 doi: 10.1177/002215540305101011
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Mahale S, Kumar M, Sharma A, Babu A, Ranjan S, Sachidanandan C, et al. The light intermediate chain 2 subpopulation of dynein regulates mitotic spindle orientation. Sci Rep. 2016;6:22.
pubmed: 28003657 pmcid: 5431351 doi: 10.1038/s41598-016-0030-3
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.
pubmed: 23550210 pmcid: 4160307 doi: 10.1126/scisignal.2004088
Chen DY, Dai DF, Hua Y, Qi WQ. p53 suppresses 14-3-3gamma by stimulating proteasome-mediated 14-3-3gamma protein degradation. Int J Oncol. 2015;46:818–24.
pubmed: 25384678 doi: 10.3892/ijo.2014.2740
Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M, et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature. 2002;417:871–5.
pubmed: 12075357 doi: 10.1038/nature00826
Roeten MSF, Cloos J, Jansen G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol. 2018;81:227–43.
pubmed: 29184971 doi: 10.1007/s00280-017-3489-0
Winter S, Simboeck E, Fischle W, Zupkovitz G, Dohnal I, Mechtler K, et al. 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J. 2008;27:88–99.
pubmed: 18059471 doi: 10.1038/sj.emboj.7601954
Vedadi M, Blazer L, Eram MS, Barsyte-Lovejoy D, Arrowsmith CH, Hajian T. Targeting human SET1/MLL family of proteins. Protein Sci. 2017;26:662–76.
pubmed: 28160335 pmcid: 5368065 doi: 10.1002/pro.3129
Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol. 2015;2:e970484.
pubmed: 27308407 pmcid: 4905242 doi: 10.4161/23723548.2014.970484
Holland AJ, Cleveland DW. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 2012;13:501–14.
pubmed: 22565320 pmcid: 3367240 doi: 10.1038/embor.2012.55
Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18:533–43.
pubmed: 20412769 pmcid: 3325599 doi: 10.1016/j.devcel.2010.02.013
Nishimura K, Johmura Y, Deguchi K, Jiang Z, Uchida KSK, Suzuki N, et al. Cdk1-mediated DIAPH1 phosphorylation maintains metaphase cortical tension and inactivates the spindle assembly checkpoint at anaphase. Nat Commun. 2019;10:981.
pubmed: 30816115 pmcid: 6395754 doi: 10.1038/s41467-019-08957-w
Lara-Gonzalez P, Moyle MW, Budrewicz J, Mendoza-Lopez J, Oegema K, Desai A. The G2-to-M transition is ensured by a dual mechanism that protects cyclin B from degradation by Cdc20-activated APC/C. Dev Cell. 2019;51:313–25.
pubmed: 31588029 pmcid: 7778526 doi: 10.1016/j.devcel.2019.09.005
Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting mitosis in cancer: emerging strategies. Mol Cell. 2015;60:524–36.
pubmed: 26590712 doi: 10.1016/j.molcel.2015.11.006
Siemeister G, Mengel A, Fernandez-Montalvan AE, Bone W, Schroder J, Zitzmann-Kolbe S, et al. Inhibition of BUB1 Kinase by BAY 1816032 Sensitizes Tumor Cells toward Taxanes, ATR, and PARP Inhibitors In Vitro and In Vivo. Clin Cancer Res. 2019;25:1404–14.
pubmed: 30429199 doi: 10.1158/1078-0432.CCR-18-0628
Uetake Y, Sluder G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol. 2010;20:1666–71.
pubmed: 20832310 pmcid: 2946429 doi: 10.1016/j.cub.2010.08.018
Giannakakou P, Robey R, Fojo T, Blagosklonny MV. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene. 2001;20:3806–13.
pubmed: 11439344 doi: 10.1038/sj.onc.1204487
Gardino AK, Yaffe MB. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol. 2011;22:688–95.
pubmed: 21945648 pmcid: 3507455 doi: 10.1016/j.semcdb.2011.09.008
Hosing AS, Kundu ST, Dalal SN. 14-3-3 Gamma is required to enforce both the incomplete S phase and G2 DNA damage checkpoints. Cell Cycle. 2008;7:3171–9.
pubmed: 18843201 doi: 10.4161/cc.7.20.6812
Qi W, Liu X, Qiao D, Martinez JD. Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer. 2005;113:359–63.
pubmed: 15455356 doi: 10.1002/ijc.20492
Raungrut P, Wongkotsila A, Lirdprapamongkol K, Svasti J, Geater SL, Phukaoloun M, et al. Prognostic significance of 14-3-3gamma overexpression in advanced non-small cell lung cancer. Asian Pac J Cancer Prev. 2014;15:3513–8.
pubmed: 24870749 doi: 10.7314/APJCP.2014.15.8.3513
Kasahara K, Goto H, Izawa I, Kiyono T, Watanabe N, Elowe S, et al. PI 3-kinase-dependent phosphorylation of Plk1-Ser99 promotes association with 14-3-3gamma and is required for metaphase-anaphase transition. Nat Commun. 2013;4:1882.
pubmed: 23695676 pmcid: 3675326 doi: 10.1038/ncomms2879
Bose A, Dalal SN. 14-3-3 proteins mediate the localization of Centrin2 to centrosome. J Biosci. 2019;44:42–10.
pubmed: 31180055 doi: 10.1007/s12038-019-9867-5
Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M. 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J. 2010;29:2802–12.
pubmed: 20639859 pmcid: 2924644 doi: 10.1038/emboj.2010.157
Macdonald N, Welburn JP, Noble ME, Nguyen A, Yaffe MB, Clynes D, et al. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell. 2005;20:199–211.
pubmed: 16246723 doi: 10.1016/j.molcel.2005.08.032
Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell. 2009;138:1122–36.
pubmed: 19766566 doi: 10.1016/j.cell.2009.07.031
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Lassmann T, Hayashizaki Y, Daub CO. SAMStat: monitoring biases in next-generation sequencing data. Bioinformatics. 2011;27:130–1.
pubmed: 21088025 doi: 10.1093/bioinformatics/btq614
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Subhash S, Kanduri C. GeneSCF: a real-time based functional enrichment tool with support for multiple organisms. BMC Bioinfor. 2016;17:365.
doi: 10.1186/s12859-016-1250-z

Auteurs

Mohamad Moustafa Ali (MM)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Mirco Di Marco (M)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Sagar Mahale (S)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Daniel Jachimowicz (D)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Subazini Thankaswamy Kosalai (ST)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Silke Reischl (S)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Luisa Statello (L)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Kankadeb Mishra (K)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Catarina Darnfors (C)

Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden.

Meena Kanduri (M)

Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.

Chandrasekhar Kanduri (C)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden. kanduri.chandrasekhar@gu.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH