Mechanically Efficient Cellular Materials Inspired by Cuttlebone.
bioinspired materials
biomaterials
cellular materials
cuttlebone
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
revised:
17
01
2021
received:
27
10
2020
pubmed:
7
3
2021
medline:
3
11
2021
entrez:
6
3
2021
Statut:
ppublish
Résumé
Cellular materials with excellent mechanical efficiency are essential for aerospace structures, lightweight vehicles, and energy absorption. However, current synthetic cellular materials, such as lattice materials with a unit cell arranged in an ordered hierarchy, are still far behind many biological cellular materials in terms of both structural complexity and mechanical performance. Here, the complex porous structure and the mechanics of the cuttlebone are studied, which acts as a rigid buoyancy tank for cuttlefish to resist large hydrostatic pressure in the deep-sea environment. The cuttlebone structure, constructed like lamellar septa, separated by asymmetric, distorted S-shaped walls, exhibits superior strength and energy-absorption capability to the octet-truss lattice and conventional polymer and metal foams. Inspired by these findings, mechanically efficient cellular materials are designed and fabricated by 3D printing, which are greatly demanded for many applications including aerospace structures and tissue-engineering-scaffold. This study represents an effective approach for the design and engineering of high-performance cellular materials through bioinspired 3D printing.
Identifiants
pubmed: 33675262
doi: 10.1002/adma.202007348
doi:
Substances chimiques
Polymers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2007348Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Nat. Mater. 2014, 14, 23.
M. Eder, S. Amini, P. Fratzl, Science 2018, 362, 543.
M. A. Meyers, J. McKittrick, P. Y. Chen, Science 2013, 339, 773.
L. J. Gibson, M. F. Ashby, Cellular Solids: Structure & Properties, Cambridge University Press, Cambridge 1997.
J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl, Science 2005, 309, 275.
B. Ji, H. Gao, J. Mech. Phys. Solids 2004, 52, 1963.
S. Flores-Bonano, J. Vargas-Martinez, O. M. Suarez, W. Silva-Araya, Materials 2019, 12, 1851.
A. Kausar, Polym.-Plast. Technol. Eng. 2018, 57, 346.
D. W. Hutmacher, Biomaterials 2000, 21, 2529.
T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, A. J. Jacobsen, Adv. Eng. Mater. 2014, 16, 276.
E. J. Denton, J. B. Gilpin-Brown, Nature 1959, 184, 1330.
E. J. Denton, J. B. Gilpin-Brown, J. Mar. Biol. Assoc. U. K. 1961, 41, 365.
E. J. Denton, J. B. Gilpin-Brown, J. Mar. Biol. Assoc. U. K. 1961, 41, 319.
K. M. Sherrard, Biol. Pharm. Bull. 2000, 198, 404.
A. Packard, Nature 1969, 221, 875.
X. Y. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, C. M. Spadaccini, Science 2014, 344, 1373.
Z. L. Song, S. Nutt, Adv. Eng. Mater. 2005, 7, 73.
J. T. Beals, M. S. Thompson, J. Mater. Sci. 1997, 32, 3595.
G. Zheng, Z. Wang, K. Song, Thin Wall. Struct. 2020, 150, 106571.
S. Fan, T. Zhang, K. Yu, H. Fang, H. Xiong, Y. Dai, J. Ma, D. Jiang, H. Zhu, Trans. Nonferrous Met. Soc. China 2017, 27, 117.
K. Sekido, T. Seo, K. Kitazono, Key Eng. Mater. 2010, 433, 287.
A. C. Kaya, P. Zaslansky, M. Ipekoglu, C. Fleck, Mater. Des. 2018, 143, 297.
D. S. J. Al-Saedi, S. H. Masood, M. Faizan-Ur-Rab, A. Alomarah, P. Ponnusamy, Mater. Des. 2018, 144, 32.
M. Mohsenizadeh, F. Gasbarri, M. Munther, A. Beheshti, K. Davami, Mater. Des. 2018, 139, 521.
J. D. Birchall, N. L. Thomas, J. Mater. Sci. 1983, 18, 2081.
A. Knöller, T. Runčevski, R. E. Dinnebier, J. Bill, Z. Burghard, Sci. Rep. 2017, 7, 42951.
J. Cadman, Y. H. Chen, S. W. Zhou, Q. Li, Mater. Sci. Forum 2010, 654-656, 2229.
A. G. Checa, J. H. Cartwright, I. Sanchez-Almazo, J. P. Andrade, F. Ruiz-Raya, Sci. Rep. 2015, 5, 11513.
G. N. Greaves, A. L. Greer, R. S. Lakes, T. Rouxel, Nat. Mater. 2011, 10, 823.
Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, N. Li, J. Oh, J. A. Lee, M. Kozlov, A. C. Chipara, H. Terrones, P. Xiao, G. Long, Y. Huang, F. Zhang, L. Zhang, X. Lepró, C. Haines, M. D. Lima, N. P. Lopez, L. P. Rajukumar, A. L. Elias, S. Feng, S. J. Kim, N. T. Narayanan, P. M. Ajayan, M. Terrones, A. Aliev, P. Chu, et al., Nat. Commun. 2015, 6, 6141.
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin, L. Peng, T. Wang, X. Ren, C. Wang, Z. Zhao, C. Wan, H. Fei, L. Wang, J. Zhu, H. Sun, W. Chen, T. Du, B. Deng, G. J. Cheng, I. Shakir, C. Dames, T. S. Fisher, X. Zhang, H. Li, Y. Huang, X. Duan, Science 2019, 363, 723.
F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A. J. Stevenson, S. Deville, Nat. Mater. 2014, 13, 508.
L. North, D. Labonte, M. L. Oyen, M. P. Coleman, H. B. Caliskan, R. E. Johnston, APL Mater. 2017, 5, 116103.
T. Yang, Z. Jia, H. Chen, Z. Deng, W. Liu, L. Chen, L. Li, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 23450.
G. X. Gu, M. Takaffoli, M. J. Buehler, Adv. Mater. 2017, 29, 1700060.
B. G. Compton, J. A. Lewis, Adv. Mater. 2014, 26, 5930.
J. R. Raney, B. G. Compton, J. Mueller, T. J. Ober, K. Shea, J. A. Lewis, Proc. Natl Acad. Sci. U. S. A. 2018, 115, 1198.
A. R. Studart, Chem. Soc. Rev. 2016, 45, 359.
M. M. Porter, D. Adriaens, R. L. Hatton, M. A. Meyers, J. McKittrick, Science 2015, 349, aaa6683.
L. R. Meza, S. Das, J. R. Greer, Science 2014, 345, 1322.
X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, C. M. Spadaccini, Nat. Mater. 2016, 15, 1100.
C. Yang, M. Boorugu, A. Dopp, J. Ren, R. Martin, D. Han, W. Choi, H. Lee, Mater. Horiz. 2019, 6, 1244.
M. Pelanconi, A. Ortona, Materials 2019, 12, 4134.
V. S. Deshpande, N. A. Fleck, M. F. Ashby, J. Mech. Phys. Solids 2001, 49, 1747.