Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism.


Journal

British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536

Informations de publication

Date de publication:
06 2021
Historique:
revised: 09 02 2021
received: 08 10 2020
accepted: 28 02 2021
pubmed: 10 3 2021
medline: 6 7 2021
entrez: 9 3 2021
Statut: ppublish

Résumé

Many drugs and environmental contaminants induce hypercholesterolemia and promote the risk of atherosclerotic cardiovascular disease. We tested the hypothesis that pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, regulates the level of circulating atherogenic lipids in humans and utilized mouse experiments to identify the mechanisms involved. We performed serum NMR metabolomics in healthy volunteers administered rifampicin, a prototypical human PXR ligand or placebo in a crossover setting. We used high-fat diet fed wild-type and PXR knockout mice to investigate the mechanisms mediating the PXR-induced alterations in cholesterol homeostasis. Activation of PXR induced cholesterogenesis both in pre-clinical and clinical settings. In human volunteers, rifampicin increased intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and total cholesterol and lathosterol-cholesterol ratio, a marker of cholesterol synthesis, suggesting increased cholesterol synthesis. Experiments in mice indicated that PXR activation causes widespread induction of the cholesterol synthesis genes including the rate-limiting Hmgcr and upregulates the intermediates in the Kandutsch-Russell cholesterol synthesis pathway in the liver. Additionally, PXR activation induced plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of hepatic LDL uptake, in both mice and humans. We propose that these effects were mediated through increased proteolytic activation of sterol regulatory element-binding protein 2 (SREBP2) in response to PXR activation. PXR activation induces cholesterol synthesis, elevating LDL and total cholesterol in humans. The PXR-SREBP2 pathway is a novel regulator of the cholesterol and PCSK9 synthesis and a molecular mechanism for drug- and chemical-induced hypercholesterolemia.

Sections du résumé

BACKGROUND AND PURPOSE
Many drugs and environmental contaminants induce hypercholesterolemia and promote the risk of atherosclerotic cardiovascular disease. We tested the hypothesis that pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, regulates the level of circulating atherogenic lipids in humans and utilized mouse experiments to identify the mechanisms involved.
EXPERIMENTAL APPROACH
We performed serum NMR metabolomics in healthy volunteers administered rifampicin, a prototypical human PXR ligand or placebo in a crossover setting. We used high-fat diet fed wild-type and PXR knockout mice to investigate the mechanisms mediating the PXR-induced alterations in cholesterol homeostasis.
KEY RESULTS
Activation of PXR induced cholesterogenesis both in pre-clinical and clinical settings. In human volunteers, rifampicin increased intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and total cholesterol and lathosterol-cholesterol ratio, a marker of cholesterol synthesis, suggesting increased cholesterol synthesis. Experiments in mice indicated that PXR activation causes widespread induction of the cholesterol synthesis genes including the rate-limiting Hmgcr and upregulates the intermediates in the Kandutsch-Russell cholesterol synthesis pathway in the liver. Additionally, PXR activation induced plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of hepatic LDL uptake, in both mice and humans. We propose that these effects were mediated through increased proteolytic activation of sterol regulatory element-binding protein 2 (SREBP2) in response to PXR activation.
CONCLUSION AND IMPLICATIONS
PXR activation induces cholesterol synthesis, elevating LDL and total cholesterol in humans. The PXR-SREBP2 pathway is a novel regulator of the cholesterol and PCSK9 synthesis and a molecular mechanism for drug- and chemical-induced hypercholesterolemia.

Identifiants

pubmed: 33687065
doi: 10.1111/bph.15433
doi:

Substances chimiques

Pharmaceutical Preparations 0
Pregnane X Receptor 0
Receptors, LDL 0
Sterol Regulatory Element Binding Protein 2 0
PCSK9 protein, human EC 3.4.21.-
Pcsk9 protein, mouse EC 3.4.21.-
Proprotein Convertase 9 EC 3.4.21.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2461-2481

Subventions

Organisme : Academy of Finland
ID : 286743
Organisme : Academy of Finland
ID : 323706
Organisme : H2020 Societal Challenges
ID : 825762
Organisme : Novo Nordisk Foundation
ID : NNF14OC0010653
Organisme : Novo Nordisk Foundation
ID : NNF15OC0015846
Organisme : Sigrid Juselius Foundation
Organisme : Diabetes Research Foundation
Organisme : Northern Finland Health Care Support Foundation
Organisme : Finnish Foundation for Cardiovascular Research
Organisme : Finnish Medical Foundation

Informations de copyright

© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

Références

Alexander, S. P. H., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., & Young, M. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176, S229-S246.
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., & Watts, V. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176, S297-S396.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407-411. https://doi.org/10.1111/bph.14112
Bitter, A., Rümmele, P., Klein, K., Kandel, B. A., Rieger, J. K., Nüssler, A. K., Zanger, U. M., Trauner, M., Schwab, M., & Burk, O. (2015). Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Archives of Toxicology, 89, 2089-2103. https://doi.org/10.1007/s00204-014-1348-x
Björkhem, I., Miettinen, T., Reihnér, E., Ewerth, S., Angelin, B., & Einarsson, K. (1987). Correlation between serum levels of some cholesterol precursors and activity of HMG-CoA reductase in human liver. Journal of Lipid Research, 28, 1137-1143. https://doi.org/10.1016/S0022-2275(20)38603-X
Castillo, S., Mattila, I., Miettinen, J., Orešič, M., & Hyötyläinen, T. (2011). Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Analytical Chemistry, 83, 3058-3067. https://doi.org/10.1021/ac103308x
Chen, J., & Raymond, K. (2006). Roles of rifampicin in drug-drug interactions: Underlying molecular mechanisms involving the nuclear pregnane X receptor. Annals of Clinical Microbiology and Antimicrobials, 5, 3. https://doi.org/10.1186/1476-0711-5-3
Coyne, M. J., Bonorris, G. G., Goldstein, L. I., & Schoenfield, L. J. (1976). Effect of chenodeoxycholic acid and phenobarbital on the rate-limiting enzymes of hepatic cholesterol and bile acid synthesis in patients with gallstones. The Journal of Laboratory and Clinical Medicine, 87, 281-291.
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987-993. https://doi.org/10.1111/bph.14153
de Leon, J., Susce, M. T., Johnson, M., Hardin, M., Pointer, L., Ruaño, G., Windemuth, A., & Diaz, F. J. (2007). A clinical study of the association of antipsychotics with hyperlipidemia. Schizophrenia Research, 92, 95-102. https://doi.org/10.1016/j.schres.2007.01.015
Diczfalusy, U., Kanebratt, K. P., Bredberg, E., Andersson, T. B., Böttiger, Y., & Bertilsson, L. (2009). 4β-Hydroxycholesterol as an endogenous marker for CYP3A4/5 activity. Stability and half-life of elimination after induction with rifampicin. British Journal of Clinical Pharmacology, 67, 38-43.
Eirís, J., Novo-Rodríguez, M. I., Del Río, M., Meseguer, P., Del Río, M. C., & Castro-Gago, M. (2000). The effects on lipid and apolipoprotein serum levels of long-term carbamazepine, valproic acid and phenobarbital therapy in children with epilepsy. Epilepsy Research, 41, 1-7. https://doi.org/10.1016/S0920-1211(00)00119-4
Estrada, V., & Portilla, J. (2011). Dyslipidemia related to antiretroviral therapy. AIDS Reviews, 13, 49-56.
Feely, J., Clee, M., Pereira, L., & Guy, E. (1983). Enzyme induction with rifampicin: Lipoproteins and drug binding to alpha 1-acid glycoprotein. British Journal of Clinical Pharmacology, 16, 195-197. https://doi.org/10.1111/j.1365-2125.1983.tb04986.x
Fernandez, C., Sandin, M., Sampaio, J. L., Almgren, P., Narkiewicz, K., Hoffmann, M., Hedner, T., Wahlstrand, B., Simons, K., Shevchenko, A., James, P., & Melander, O. (2013). Plasma lipid composition and risk of developing cardiovascular disease. PLoS ONE, 8, e71846. https://doi.org/10.1371/journal.pone.0071846
Garg, A., & Simha, V. (2007). Update on dyslipidemia. The Journal of Clinical Endocrinology & Metabolism, 92, 1581-1589. https://doi.org/10.1210/jc.2007-0275
Getz, G. S., & Reardon, C. A. (2006). Diet and murine atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 242-249. https://doi.org/10.1161/01.ATV.0000201071.49029.17
Glerup, S., Schulz, R., Laufs, U., & Schlüter, K.-D. (2017). Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Research in Cardiology, 112, 32. https://doi.org/10.1007/s00395-017-0619-0
Gwag, T., Meng, Z., Sui, Y., Helsley, R. N., Park, S. H., Wang, S., Greenberg, R. N., & Zhou, C. (2019). Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. Journal of Hepatology, 70, 930-940. https://doi.org/10.1016/j.jhep.2018.12.038
Hakkola, J., Rysä, J., & Hukkanen, J. (2016). Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1859, 1072-1082. https://doi.org/10.1016/j.bbagrm.2016.03.012
Hassani-Nezhad-Gashti, F., Kummu, O., Karpale, M., Rysä, J., & Hakkola, J. (2019). Nutritional status modifies pregnane X receptor regulated transcriptome. Scientific Reports, 9, 16728. https://doi.org/10.1038/s41598-019-53101-9
Hassani-Nezhad-Gashti, F., Salonurmi, T., Hautajärvi, H., Rysä, J., Hakkola, J., & Hukkanen, J. (2020). Pregnane X receptor activator rifampin increases blood pressure and stimulates plasma renin activity. Clinical Pharmacology & Therapeutics, 108, 856-865. https://doi.org/10.1002/cpt.1871
Hautajärvi, H., Hukkanen, J., Turpeinen, M., Mattila, S., & Tolonen, A. (2018). Quantitative analysis of 4β- and 4α-hydroxycholesterol in human plasma and serum by UHPLC/ESI-HR-MS. Journal of Chromatography B, 1100-1101, 179-186.
He, J., Gao, J., Xu, M., Ren, S., Stefanovic-Racic, M., O'Doherty, R. M., & Xie, W. (2013). PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes, 62, 1876-1887. https://doi.org/10.2337/db12-1039
Howe, K., Sanat, F., Thumser, A. E., Coleman, T., & Plant, N. (2011). The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes. Xenobiotica, 41, 519-529. https://doi.org/10.3109/00498254.2011.569773
Hukkanen, J., Rysä, J., Mäkelä, K. A., Herzig, K.-H., Hakkola, J., & Savolainen, M. J. (2015). The effect of pregnane X receptor agonists on postprandial incretin hormone secretion in rats and humans. Journal of Physiology and Pharmacology, 66, 831-839.
Hukkanen, J. (2012). Induction of cytochrome P450 enzymes: A view on human in vivo findings. Expert Review of Clinical Pharmacology, 5, 569-585. https://doi.org/10.1586/ecp.12.39
Hukkanen, J., Puurunen, J., Hyötyläinen, T., Savolainen, M. J., Ruokonen, A., Morin-Papunen, L., Orešič, M., Piltonen, T., & Tapanainen, J. S. (2015). The effect of atorvastatin treatment on serum oxysterol concentrations and cytochrome P450 3A4 activity. British Journal of Clinical Pharmacology, 80, 473-479. https://doi.org/10.1111/bcp.12701
Ingelsson, E., Schaefer, E. J., Contois, J. H., McNamara, J. R., Sullivan, L., Keyes, M. J., Pencina, M. J., Schoonmaker, C., Wilson, P. W. F., D'Agostino, R. B., & Vasan, R. S. (2007). Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. Journal of the American Medical Association, 298, 776-785. https://doi.org/10.1001/jama.298.7.776
Inouye, M., Kettunen, J., Soininen, P., Silander, K., Ripatti, S., Kumpula, L. S., Hämäläinen, E., Jousilahti, P., Kangas, A. J., Männistö, S., Savolainen, M. J., Jula, A., Leiviskä, J., Palotie, A., Salomaa, V., Perola, M., Ala-Korpela, M., & Peltonen, L. (2010). Metabonomic, transcriptomic, and genomic variation of a population cohort. Molecular Systems Biology, 6, 441. https://doi.org/10.1038/msb.2010.93
Kallio, M. A., Tuimala, J. T., Hupponen, T., Klemelä, P., Gentile, M., Scheinin, I., Koski, M., Käki, J., & Korpelainen, E. I. (2011). Chipster: User-friendly analysis software for microarray and other high-throughput data. BMC Genomics, 12, 507. https://doi.org/10.1186/1471-2164-12-507
Kasichayanula, S., Boulton, D. W., Luo, W.-L., Rodrigues, A. D., Yang, Z., Goodenough, A., Lee, M., Jemal, M., & LaCreta, F. (2014). Validation of 4β-hydroxycholesterol and evaluation of other endogenous biomarkers for the assessment of CYP3A activity in healthy subjects. British Journal of Clinical Pharmacology, 78, 1122-1134. https://doi.org/10.1111/bcp.12425
Khuseyinova, N., & Koenig, W. (2006). Apolipoprotein A-I and risk for cardiovascular diseases. Current Atherosclerosis Reports, 8, 365-373. https://doi.org/10.1007/s11883-006-0033-9
Kliewer, S. A., Goodwin, B., & Willson, T. M. (2002). The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocrine Reviews, 23, 687-702. https://doi.org/10.1210/er.2001-0038
Kliewer, S. A., Moore, J. T., Wade, L., Staudinger, J. L., Watson, M. A., Jones, S. A., McKee, D. D., Oliver, B. B., Willson, T. M., Zetterström, R. H., Perlmann, T., & Lehmann, J. M. (1998). An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell, 92, 73-82. https://doi.org/10.1016/S0092-8674(00)80900-9
Krämer, A., Green, J., Pollard, J., Tugendreich, S., & Tugendreich, S. (2014). Causal analysis approaches in ingenuity pathway analysis. Bioinformatics (Oxford, England), 30, 523-530. https://doi.org/10.1093/bioinformatics/btt703
Lagace, T. A. (2014). PCSK9 and LDLR degradation: Regulatory mechanisms in circulation and in cells. Current Opinion in Lipidology, 25, 387-393. https://doi.org/10.1097/MOL.0000000000000114
Laufs, U., Dent, R., Kostenuik, P. J., Toth, P. P., Catapano, A. L., & Chapman, M. J. (2019). Why is hypercholesterolaemia so prevalent? A view from evolutionary medicine. European Heart Journal, 40, 2825-2830. https://doi.org/10.1093/eurheartj/ehy479
Li, L., Li, H., Garzel, B., Yang, H., Sueyoshi, T., Li, Q., Shu, Y., Zhang, J., Hu, B., Heyward, S., Moeller, T., Xie, W., Negishi, M., & Wang, H. (2015). SLC13A5 is a novel transcriptional target of the pregnane x receptor and sensitizes drug-induced steatosis in human liver. Molecular Pharmacology, 87, 674-682. https://doi.org/10.1124/mol.114.097287
Li, T., & Chiang, J. Y. L. (2005). Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. American Journal of Physiology. Gastrointestinal and Liver Physiology, 288, G74-G84. https://doi.org/10.1152/ajpgi.00258.2004
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. M., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611-3616. https://doi.org/10.1111/bph.15178
Lu, Y., Feskens, E. J. M., Boer, J. M. A., & Müller, M. (2010). The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis, 210, 14-27. https://doi.org/10.1016/j.atherosclerosis.2009.10.035
Luoma, P. V., Reunanen, M. I., & Sotaniemi, E. A. (1979). Changes in serum triglyceride and cholesterol levels during long-term phenytoin treatment for epilepsy. Acta Medica Scandinavica, 206, 229-231. https://doi.org/10.1111/j.0954-6820.1979.tb13500.x
Lütjohann, D., Hahn, C., Prange, W., Sudhop, T., Axelson, M., Sauerbruch, T., Bergmann, K., & Reichel, C. (2004). Influence of rifampin on serum markers of cholesterol and bile acid synthesis in men. International Journal of Clinical Pharmacology and Therapeutics, 42, 307-313. https://doi.org/10.5414/CPP42307
Mantel-Teeuwisse, A. K., Kloosterman, J. M. E., Maitland-van der Zee, A. H., Klungel, O. H., Porsius, A. J., & de Boer, A. (2001). Drug-induced lipid changes. Drug Safety, 24, 443-456. https://doi.org/10.2165/00002018-200124060-00003
Marmugi, A., Lasserre, F., Beuzelin, D., Ducheix, S., Huc, L., Polizzi, A., Chetivaux, M., Pineau, T., Martin, P., Guillou, H., & Mselli-Lakhal, L. (2014). Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology, 325, 133-143. https://doi.org/10.1016/j.tox.2014.08.006
Marschall, H.-U., Wagner, M., Zollner, G., Fickert, P., Diczfalusy, U., Gumhold, J., Silbert, D., Fuchsbichler, A., Benthin, L., Grundström, R., Gustafsson, U., Sahlin, S., Einarsson, C., & Trauner, M. (2005). Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology, 129, 476-485. https://doi.org/10.1016/j.gastro.2005.05.009
Meng, Z., Gwag, T., Sui, Y., Park, S.-H., Zhou, X., & Zhou, C. (2019). The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling. JCI Insight, 4, e125657. https://doi.org/10.1172/jci.insight.125657
Meyer, J. M., & Koro, C. E. (2004). The effects of antipsychotic therapy on serum lipids: A comprehensive review. Schizophrenia Research, 70, 1-17. https://doi.org/10.1016/j.schres.2004.01.014
Miettinen, T. A., Tilvis, R. S., & Kesäniemi, Y. A. (1989). Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men. Metabolism, 38, 136-140. https://doi.org/10.1016/0026-0495(89)90252-7
Müjgan Aynaci, F., Orhan, F., Orem, A., Yildirmis, S., & Gedik, Y. (2001). Effect of antiepileptic drugs on plasma lipoprotein (a) and other lipid levels in childhood. Journal of Child Neurology, 16, 367-369. https://doi.org/10.1177/088307380101600511
Nagaoka, S., Miyazaki, H., Aoyama, Y., & Yoshida, A. (1990). Effects of dietary polychlorinated biphenyls on cholesterol catabolism in rats. The British Journal of Nutrition, 64, 161-169. https://doi.org/10.1079/BJN19900018
Nicholson, A., Reifsnyder, P. C., Malcolm, R. D., Lucas, C. A., MacGregor, G. R., Zhang, W., & Leiter, E. H. (2010). Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene. Obesity, 18, 1902-1905. https://doi.org/10.1038/oby.2009.477
Ohnhaus, E. E., Kirchhof, B., & Peheim, E. (1979). Effect of enzyme induction on plasma lipids using antipyrine, phenobarbital, and rifampicin. Clinical Pharmacology and Therapeutics, 25, 591-597. https://doi.org/10.1002/cpt1979255part1591
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., & Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410
Ricketts, M.-L., Boekschoten, M. V., Kreeft, A. J., Hooiveld, G. J. E. J., Moen, C. J. A., Müller, M., Frants, R. R., Kasanmoentalib, S., Post, S. M., Princen, H. M. G., Porter, J. G., Katan, M. B., Hofker, M. H., & Moore, D. D. (2007). The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Molecular Endocrinology (Baltimore, Md.), 21, 1603-1616. https://doi.org/10.1210/me.2007-0133
Roth, A., Looser, R., Kaufmann, M., Blättler, S. M., Rencurel, F., Huang, W., Moore, D. D., & Meyer, U. A. (2008). Regulatory cross-talk between drug metabolism and lipid homeostasis: Constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Molecular Pharmacology, 73, 1282-1289. https://doi.org/10.1124/mol.107.041012
Roth, G. A., Forouzanfar, M. H., Moran, A. E., Barber, R., Nguyen, G., Feigin, V. L., Naghavi, M., Mensah, G. A., & Murray, C. J. L. (2015). Demographic and epidemiologic drivers of global cardiovascular mortality. The New England Journal of Medicine, 372, 1333-1341. https://doi.org/10.1056/NEJMoa1406656
Rysä, J., Buler, M., Savolainen, M. J., Ruskoaho, H., Hakkola, J., & Hukkanen, J. (2013). Pregnane X receptor agonists impair postprandial glucose tolerance. Clinical Pharmacology & Therapeutics, 93, 556-563. https://doi.org/10.1038/clpt.2013.48
Sahebkar, A., Simental-Mendía, L. E., Guerrero-Romero, F., Golledge, J., & Watts, G. F. (2015). Effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) concentrations: A systematic review and meta-analysis of clinical trials. Diabetes, Obesity and Metabolism, 17, 1042-1055. https://doi.org/10.1111/dom.12536
Schlitt, A., Blankenberg, S., Yan, D., Von Gizycki, H., Buerke, M., Werdan, K., Bickel, C., Lackner, K. J., Meyer, J., Rupprecht, H. J., & Jiang, X. C. (2006). Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutrition and Metabolism, 3, 1-8.
Seidah, N. G., Awan, Z., Chrétien, M., & Mbikay, M. (2014). PCSK9: A key modulator of cardiovascular health. Circulation Research, 114, 1022-1036. https://doi.org/10.1161/CIRCRESAHA.114.301621
Sever, N., Yang, T., Brown, M. S., Goldstein, J. L., & DeBose-Boyd, R. A. (2003). Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Molecular Cell, 11, 25-33. https://doi.org/10.1016/S1097-2765(02)00822-5
Shimano, H., & Sato, R. (2017). SREBP-regulated lipid metabolism: Convergent physiology - divergent pathophysiology. Nature Reviews. Endocrinology, 13, 710-730. https://doi.org/10.1038/nrendo.2017.91
Soininen, P., Kangas, A. J., Würtz, P., Suna, T., & Ala-Korpela, M. (2015). Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circulation. Cardiovascular Genetics, 8, 192-206. https://doi.org/10.1161/CIRCGENETICS.114.000216
Soininen, P., Kangas, A. J., Würtz, P., Tukiainen, T., Tynkkynen, T., Laatikainen, R., Järvelin, M. R., Kähönen, M., Lehtimäki, T., Viikari, J., Raitakari, O. T., Savolainen, M. J., & Ala-Korpela, M. (2009). High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. The Analyst, 134, 1781-1785. https://doi.org/10.1039/b910205a
Spann, N. J., Garmire, L. X., McDonald, J. G., Myers, D. S., Milne, S. B., Shibata, N., Reichart, D., Fox, J. N., Shaked, I., Heudobler, D., Raetz, C. R. H., Wang, E. W., Kelly, S. L., Sullards, M. C., Murphy, R. C., Merrill, A. H. Jr., Brown, H. A., Dennis, E. A., Li, A. C., & Glass, C. K. (2012). Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell, 151, 138-152. https://doi.org/10.1016/j.cell.2012.06.054
Spruiell, K., Richardson, R. M., Cullen, J. M., Awumey, E. M., Gonzalez, F. J., & Gyamfi, M. A. (2014). Role of Pregnane X receptor in obesity and glucose homeostasis in male mice. Journal of Biological Chemistry, 289, 3244-3261. https://doi.org/10.1074/jbc.M113.494575
Temel, R. E., & Brown, J. M. (2015). A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends in Pharmacological Sciences, 36, 440-451. https://doi.org/10.1016/j.tips.2015.04.002
Toye, A. A., Lippiat, J. D., Proks, P., Shimomura, K., Bentley, L., Hugill, A., Mijat, V., Goldsworthy, M., Moir, L., Haynes, A., Quarterman, J., Freeman, H. C., Ashcroft, F. M., & Cox, R. D. (2005). A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia, 48, 675-686. https://doi.org/10.1007/s00125-005-1680-z
van der Wulp, M. Y. M., Verkade, H. J., & Groen, A. K. (2013). Regulation of cholesterol homeostasis. Molecular and Cellular Endocrinology, 368, 1-16. https://doi.org/10.1016/j.mce.2012.06.007
Wang, Q., Jokelainen, J., Auvinen, J., Puukka, K., Keinänen-Kiukaanniemi, S., Järvelin, M.-R., Kettunen, J., Mäkinen, V. P., & Ala-Korpela, M. (2019). Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: An interventional study. BMC Medicine, 17, 217. https://doi.org/10.1186/s12916-019-1440-4
Warden, B. A., Fazio, S., & Shapiro, M. D. (2019). The PCSK9 revolution: Current status, controversies, and future directions. Trends in Cardiovascular Medicine, 30, 179-185.
Weusten-Van der Wouw, M. P. M. E., Katan, M. B., Viani, R., Huggett, A. C., Liardon, R., Lund-Larsen, P. G., Thelle, D. S., Ahola, I., & Aro, A. (1994). Identity of the cholesterol-raising factor from boiled coffee and its effects on liver function enzymes. Journal of Lipid Research, 35, 721-733. https://doi.org/10.1016/S0022-2275(20)41169-1
Würtz, P., Kangas, A. J., Soininen, P., Lawlor, D. A., Davey Smith, G., & Ala-Korpela, M. (2017). Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: A primer on-omic technologies. American Journal of Epidemiology, 186, 1084-1096. https://doi.org/10.1093/aje/kwx016
Würtz, P., & Soininen, P. (2020). Reply to: “Methodological issues regarding: ‘A third of nonfasting plasma cholesterol is in remnant lipoproteins: Lipoprotein subclass profiling in 9293 individuals’”. Atherosclerosis, 302, 59-61. https://doi.org/10.1016/j.atherosclerosis.2020.03.028
Würtz, P., Wang, Q., Soininen, P., Kangas, A. J., Fatemifar, G., Tynkkynen, T., Tiainen, M., Perola, M., Tillin, T., Hughes, A. D., Mäntyselkä, P., Kähönen, M., Lehtimäki, T., Sattar, N., Hingorani, A. D., Casas, J. P., Salomaa, V., Kivimäki, M., Järvelin, M. R., & Ala-Korpela, M. (2016). Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. Journal of the American College of Cardiology, 67, 1200-1210. https://doi.org/10.1016/j.jacc.2015.12.060
Xie, W., Barwick, J. L., Downes, M., Blumberg, B., Simon, C. M., Nelson, M. C., Neuschwander-Tetri, B. A., Brunt, E. M., Guzelian, P. S., & Evans, R. M. (2000). Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature, 406, 435-439. https://doi.org/10.1038/35019116
Yang, C., McDonald, J. G., Patel, A., Zhang, Y., Umetani, M., Xu, F., Westover, E. J., Covey, D. F., Mangelsdorf, D. J., Cohen, J. C., & Hobbs, H. H. (2006). Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. Journal of Biological Chemistry, 281, 27816-27826. https://doi.org/10.1074/jbc.M603781200
Yoshii, Y., Furukawa, T., Saga, T., & Fujibayashi, Y. (2015). Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: Overview and application. Cancer Letters, 356, 211-216. https://doi.org/10.1016/j.canlet.2014.02.019
Zhou, C. (2016). Novel functions of PXR in cardiometabolic disease. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1859, 1112-1120. https://doi.org/10.1016/j.bbagrm.2016.02.015
Zhou, C., King, N., Chen, K. Y., & Breslow, J. L. (2009). Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. Journal of Lipid Research, 50, 2004-2013. https://doi.org/10.1194/jlr.M800608-JLR200
Zhou, J., Zhai, Y., Mu, Y., Gong, H., Uppal, H., Toma, D., Ren, S., Evans, R. M., & Xie, W. (2006). A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. The Journal of Biological Chemistry, 281, 15013-15020. https://doi.org/10.1074/jbc.M511116200

Auteurs

Mikko Karpale (M)

Research Unit of Biomedicine, University of Oulu, Oulu, Finland.
Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
Biocenter Oulu, University of Oulu, Oulu, Finland.

Aki Juhani Käräjämäki (AJ)

Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
Department of gastroenterology, Clinics of Internal Medicine, Vaasa Central Hospital, Vaasa, Finland.
Abdominal Center, Department of Internal Medicine, Oulu University Hospital, Oulu, Finland.

Outi Kummu (O)

Research Unit of Biomedicine, University of Oulu, Oulu, Finland.
Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
Biocenter Oulu, University of Oulu, Oulu, Finland.

Helena Gylling (H)

Heart and Lung Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.

Tuulia Hyötyläinen (T)

School of Science and Technology, Örebro University, Örebro, Sweden.

Matej Orešič (M)

School of Medical Sciences, Örebro University, Örebro, Sweden.
Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.

Ari Tolonen (A)

Admescope Ltd., Oulu, Finland.

Heidi Hautajärvi (H)

Admescope Ltd., Oulu, Finland.

Markku J Savolainen (MJ)

Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
Biocenter Oulu, University of Oulu, Oulu, Finland.
Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.

Mika Ala-Korpela (M)

Biocenter Oulu, University of Oulu, Oulu, Finland.
Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.
NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.

Janne Hukkanen (J)

Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
Biocenter Oulu, University of Oulu, Oulu, Finland.
Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.

Jukka Hakkola (J)

Research Unit of Biomedicine, University of Oulu, Oulu, Finland.
Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
Biocenter Oulu, University of Oulu, Oulu, Finland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH