Poly(Vinyl Alcohol)-Hydrogel Microparticles with Soft Barrier Shell for the Encapsulation of Micrococcus luteus.
Micrococcus luteus
antibacterial polymers
core/shell polymer microparticles
encapsulation
Journal
Macromolecular bioscience
ISSN: 1616-5195
Titre abrégé: Macromol Biosci
Pays: Germany
ID NLM: 101135941
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
18
02
2021
received:
08
12
2020
pubmed:
14
3
2021
medline:
21
1
2022
entrez:
13
3
2021
Statut:
ppublish
Résumé
The encapsulation of bacteria in polymers results in hybrid materials that are essential for the long-term biological activity of bacteria and formulations in practical applications. Here, the problem of bacterial escape and the exchange of metabolism products from hydrogel microparticles within an aqueous environment are addressed. Bacteria are encapsulated in chemically cross-linked poly(vinyl alcohol) (PVA) hydrogel-microparticles followed by their encapsulation in a pH-responsive and soft antibacterial shell of poly(N,N-diethylamino ethyl methacrylate) (PDEAEMA). This polymer shell acts selectively with regards to the mass transport in and out of the microparticle core and is affected by environmental parameters, such as pH and antibacterial effect. The pH-responsive PDEAEMA shell forms an open porous structure that accelerates nutrient transfer into the PVA core containing living Micrococcus luteus (M. luteus). Results show that the antibacterial effect of PDEAEMA retards the escape of bacteria up to 35 days when the shell is open. Additionally, the permeation of a small molecule into the gel, for example, methylene blue dye through the core/open-shell structure, certifies a flexible barrier for mass transport, which is required in the long term for the biological activity of encapsulated M. luteus.
Identifiants
pubmed: 33713551
doi: 10.1002/mabi.202000419
doi:
Substances chimiques
Anti-Bacterial Agents
0
polyvinyl alcohol hydrogel
0
Hydrogel, Polyethylene Glycol Dimethacrylate
25852-47-5
Polyvinyl Alcohol
9002-89-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2000419Informations de copyright
© 2021 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.
Références
A. Dzionek, D. Wojcieszynska, U. Guzik, Electron. J. Biotechnol. 2016, 23, 28.
A. Hansda, V. Kumar, Anshumali, Res. J. Environ. Toxicol. 2015, 9, 45.
O. F. Sarioglu, N. O. S. Keskin, A. Celebioglu, T. Tekinay, T. Uyar, Colloids Surf., B 2017, 152, 245.
O. F. Sarioglu, O. Yasa, A. Celebioglu, T. Uyar, T. Tekinay, Green Chem. 2013, 15, 2566.
M. I. Ansari, F. Masood, A. Malik, in Microbes and microbial technology (Eds: I. Ahmad, F. Ahmad, J. Pichtel), Springer, New York 2011, pp. 283-319.
C. Knierim, C. L. Greenblatt, S. Agarwal, A. Greiner, Macromol. Biosci. 2014, 14, 537.
I. Letnik, R. Avrahami, R. Port, A. Greiner, E. Zussman, J. Rokem, C. Greenblatt, Int. Biodeterior. Biodegrad. 2017, 116, 64.
A. Nakajima, T. Tsuruta, J. Radioanal. Nucl. Chem. 2004, 260, 13.
A. Nakajima, M. Yasuda, H. Yokoyama, H. Ohya-Nishiguchi, H. Kamada, World J. Microbiol. Biotechnol. 2001, 17, 343.
W. Salalha, J. Kuhn, Y. Dror, E. Zussman, Nanotechnology 2006, 17, 4675.
C. Knierim, M. Enzeroth, P. Kaiser, C. Dams, D. Nette, A. Seubert, A. Klingl, C. L. Greenblatt, V. Jerome, S. Agarwal, R. Freitag, A. Greiner, Macromol. Biosci. 2015, 15, 1052.
M. Gensheimer, A. Brandis-Heep, S. Agarwal, R. K. Thauer, A. Greiner, Macromol. Biosci. 2011, 11, 333.
S. Klein, J. Kuhn, R. Avrahami, S. Tarre, M. Beliavski, M. Green, E. Zussman, Biomacromolecules 2009, 10, 1751.
R. Vehring, Pharm. Res. 2008, 25, 999.
M. Jain, L. Ganesh, B. Manoj, C. Randhir, B. Shashikant, S. Chirag, Res. J. Pharm. Dosage Forms Technol. 2012, 4, 74.
M. Walz, T. Hirth, A. Weber, Colloids Surf., A 2018, 536, 47.
O. Kašpar, M. Jakubec, F. Štěpánek, Powder Technol. 2013, 240, 31.
S. G. Maas, G. Schaldach, E. M. Littringer, A. Mescher, U. J. Griesser, D. E. Braun, P. E. Walzel, N. Urbanetz, Powder Technol. 2011, 213, 27.
S. Reich, P. Kaiser, M. Mafi, H. Schmalz, D. Rhinow, R. Freitag, A. Greiner, Macromol. Biosci. 2019, 19, 1800356.
S. Reich, S. Agarwal, A. Greiner, Macromol. Chem. Phys. 2019, 220, 1900007.
J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes, H. Klok, Chem. Rev. 2017, 117, 1105.
Q. Chen, S. Li, Z. Feng, M. Wang, C. Cai, J. Wang, L. Zhang, Int. J. Nanomed. 2017, 12, 6857.
P. Jiang, D. X. Li, Y. J. Liu, Adv. Mater. Res. 2013, 838-841, 2326.
A. Arora, A. Mishra, Mater. Today: Proc. 2018, 5, 17156.
C. Soykan, F. Yakuphanoğlu, M. Şahin, J. Macromol. Sci., Part A: Pure Appl. Chem. 2013, 50, 953.
L. A. Rawlinson, S. Ryan, G. Mantovani, J. Syrett, D. Haddleton, D. Brayden, Biomacromolecules 2009, 11, 443.
L. Timofeeva, N. Kleshcheva, Appl. Microbiol. Biotechnol. 2011, 89, 475.