Poly(Vinyl Alcohol)-Hydrogel Microparticles with Soft Barrier Shell for the Encapsulation of Micrococcus luteus.


Journal

Macromolecular bioscience
ISSN: 1616-5195
Titre abrégé: Macromol Biosci
Pays: Germany
ID NLM: 101135941

Informations de publication

Date de publication:
05 2021
Historique:
revised: 18 02 2021
received: 08 12 2020
pubmed: 14 3 2021
medline: 21 1 2022
entrez: 13 3 2021
Statut: ppublish

Résumé

The encapsulation of bacteria in polymers results in hybrid materials that are essential for the long-term biological activity of bacteria and formulations in practical applications. Here, the problem of bacterial escape and the exchange of metabolism products from hydrogel microparticles within an aqueous environment are addressed. Bacteria are encapsulated in chemically cross-linked poly(vinyl alcohol) (PVA) hydrogel-microparticles followed by their encapsulation in a pH-responsive and soft antibacterial shell of poly(N,N-diethylamino ethyl methacrylate) (PDEAEMA). This polymer shell acts selectively with regards to the mass transport in and out of the microparticle core and is affected by environmental parameters, such as pH and antibacterial effect. The pH-responsive PDEAEMA shell forms an open porous structure that accelerates nutrient transfer into the PVA core containing living Micrococcus luteus (M. luteus). Results show that the antibacterial effect of PDEAEMA retards the escape of bacteria up to 35 days when the shell is open. Additionally, the permeation of a small molecule into the gel, for example, methylene blue dye through the core/open-shell structure, certifies a flexible barrier for mass transport, which is required in the long term for the biological activity of encapsulated M. luteus.

Identifiants

pubmed: 33713551
doi: 10.1002/mabi.202000419
doi:

Substances chimiques

Anti-Bacterial Agents 0
polyvinyl alcohol hydrogel 0
Hydrogel, Polyethylene Glycol Dimethacrylate 25852-47-5
Polyvinyl Alcohol 9002-89-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2000419

Informations de copyright

© 2021 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

Références

A. Dzionek, D. Wojcieszynska, U. Guzik, Electron. J. Biotechnol. 2016, 23, 28.
A. Hansda, V. Kumar, Anshumali, Res. J. Environ. Toxicol. 2015, 9, 45.
O. F. Sarioglu, N. O. S. Keskin, A. Celebioglu, T. Tekinay, T. Uyar, Colloids Surf., B 2017, 152, 245.
O. F. Sarioglu, O. Yasa, A. Celebioglu, T. Uyar, T. Tekinay, Green Chem. 2013, 15, 2566.
M. I. Ansari, F. Masood, A. Malik, in Microbes and microbial technology (Eds: I. Ahmad, F. Ahmad, J. Pichtel), Springer, New York 2011, pp. 283-319.
C. Knierim, C. L. Greenblatt, S. Agarwal, A. Greiner, Macromol. Biosci. 2014, 14, 537.
I. Letnik, R. Avrahami, R. Port, A. Greiner, E. Zussman, J. Rokem, C. Greenblatt, Int. Biodeterior. Biodegrad. 2017, 116, 64.
A. Nakajima, T. Tsuruta, J. Radioanal. Nucl. Chem. 2004, 260, 13.
A. Nakajima, M. Yasuda, H. Yokoyama, H. Ohya-Nishiguchi, H. Kamada, World J. Microbiol. Biotechnol. 2001, 17, 343.
W. Salalha, J. Kuhn, Y. Dror, E. Zussman, Nanotechnology 2006, 17, 4675.
C. Knierim, M. Enzeroth, P. Kaiser, C. Dams, D. Nette, A. Seubert, A. Klingl, C. L. Greenblatt, V. Jerome, S. Agarwal, R. Freitag, A. Greiner, Macromol. Biosci. 2015, 15, 1052.
M. Gensheimer, A. Brandis-Heep, S. Agarwal, R. K. Thauer, A. Greiner, Macromol. Biosci. 2011, 11, 333.
S. Klein, J. Kuhn, R. Avrahami, S. Tarre, M. Beliavski, M. Green, E. Zussman, Biomacromolecules 2009, 10, 1751.
R. Vehring, Pharm. Res. 2008, 25, 999.
M. Jain, L. Ganesh, B. Manoj, C. Randhir, B. Shashikant, S. Chirag, Res. J. Pharm. Dosage Forms Technol. 2012, 4, 74.
M. Walz, T. Hirth, A. Weber, Colloids Surf., A 2018, 536, 47.
O. Kašpar, M. Jakubec, F. Štěpánek, Powder Technol. 2013, 240, 31.
S. G. Maas, G. Schaldach, E. M. Littringer, A. Mescher, U. J. Griesser, D. E. Braun, P. E. Walzel, N. Urbanetz, Powder Technol. 2011, 213, 27.
S. Reich, P. Kaiser, M. Mafi, H. Schmalz, D. Rhinow, R. Freitag, A. Greiner, Macromol. Biosci. 2019, 19, 1800356.
S. Reich, S. Agarwal, A. Greiner, Macromol. Chem. Phys. 2019, 220, 1900007.
J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes, H. Klok, Chem. Rev. 2017, 117, 1105.
Q. Chen, S. Li, Z. Feng, M. Wang, C. Cai, J. Wang, L. Zhang, Int. J. Nanomed. 2017, 12, 6857.
P. Jiang, D. X. Li, Y. J. Liu, Adv. Mater. Res. 2013, 838-841, 2326.
A. Arora, A. Mishra, Mater. Today: Proc. 2018, 5, 17156.
C. Soykan, F. Yakuphanoğlu, M. Şahin, J. Macromol. Sci., Part A: Pure Appl. Chem. 2013, 50, 953.
L. A. Rawlinson, S. Ryan, G. Mantovani, J. Syrett, D. Haddleton, D. Brayden, Biomacromolecules 2009, 11, 443.
L. Timofeeva, N. Kleshcheva, Appl. Microbiol. Biotechnol. 2011, 89, 475.

Auteurs

Mahsa Mafi (M)

Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany.

Ariel Kushmaro (A)

Avram and S. Goldstein-Goren, Department of Biotechnology Engineering and The Ilse Katz, Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.

Charles Greenblatt (C)

Department of Microbiology and Molecular Genetics, Hebrew University of Jerusalem, Jerusalem, Israel.

Seema Agarwal (S)

Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany.

Andreas Greiner (A)

Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation

Classifications MeSH