Kleine-Levin syndrome is associated with birth difficulties and genetic variants in the
Bipolar Disorder
/ etiology
Cytokines
/ genetics
Disease Susceptibility
Disorders of Excessive Somnolence
/ etiology
Female
Genetic Association Studies
Genetic Predisposition to Disease
Genetic Variation
Humans
Kleine-Levin Syndrome
/ complications
Male
Obstetric Labor Complications
/ epidemiology
Odds Ratio
Polymorphism, Genetic
Pregnancy
Risk Assessment
Risk Factors
GWAS
Kleine-Levin syndrome
bipolar disorder
birth difficulties
hypersomnia
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
23 03 2021
23 03 2021
Historique:
entrez:
19
3
2021
pubmed:
20
3
2021
medline:
7
9
2021
Statut:
ppublish
Résumé
Kleine-Levin syndrome (KLS) is a rare disorder characterized by severe episodic hypersomnia, with cognitive impairment accompanied by apathy or disinhibition. Pathophysiology is unknown, although imaging studies indicate decreased activity in hypothalamic/thalamic areas during episodes. Familial occurrence is increased, and risk is associated with reports of a difficult birth. We conducted a worldwide case-control genome-wide association study in 673 KLS cases collected over 14 y, and ethnically matched 15,341 control individuals. We found a strong genome-wide significant association (rs71947865, Odds Ratio [OR] = 1.48,
Identifiants
pubmed: 33737391
pii: 2005753118
doi: 10.1073/pnas.2005753118
pmc: PMC7999876
pii:
doi:
Substances chimiques
Cytokines
0
TRANK1 protein, human
0
Banques de données
figshare
['10.6084/m9.figshare.14128475.v2']
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIMH NIH HHS
ID : R01 MH080957
Pays : United States
Organisme : NIH HHS
ID : S10 OD023452
Pays : United States
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Kleine D. W.. Periodische Schlafsucht. Eur. Neurol.. 1925;57:305–320.
Levin M.. Periodic somnolence and morbid hunger: A new syndrome. Brain. 1936;59:494–504.
Arnulf I., et al. Kleine-Levin syndrome: A systematic study of 108 patients. Ann. Neurol.. 2008;63:482–493.
Arnulf I., Rico T. J., Mignot E.. Diagnosis, disease course, and management of patients with Kleine-Levin syndrome. Lancet Neurol.. 2012;11:918–928.
Billiard M., Jaussent I., Dauvilliers Y., Besset A.. Recurrent hypersomnia: A review of 339 cases. Sleep Med. Rev.. 2011;15:247–257.
Arnulf I., Zeitzer J. M., File J., Farber N., Mignot E.. Kleine-Levin syndrome: A systematic review of 186 cases in the literature. Brain. 2005;128:2763–2776.
Leu-Semenescu S., et al. Lithium therapy in Kleine-Levin syndrome: An open-label, controlled study in 130 patients. Neurology. 2015;85:1655–1662.
Huang Y. S., et al. Relationship between Kleine-Levin syndrome and upper respiratory infection in Taiwan. Sleep (Basel). 2012;35:123–129.
Nguyen Q. T., et al. Familial Kleine-Levin syndrome: A specific entity?. Sleep (Basel). 2016;39:1535–1542.
Peraita-Adrados R., Vicario J. L., Tafti M., García de León M., Billiard M.. Monozygotic twins affected with Kleine-Levin syndrome. Sleep (Basel). 2012;35:595–596.
Habra O., Heinzer R., Haba-Rubio J., Rossetti A. O.. Prevalence and mimics of Kleine-Levin syndrome: A survey in French-speaking Switzerland. J. Clin. Sleep Med.. 2016;12:1083–1087.
Dauvilliers Y., et al. Kleine-Levin syndrome: An autoimmune hypothesis based on clinical and genetic analyses. Neurology. 2002;59:1739–1745.
Lavault S., et al. Kleine-Levin syndrome in 120 patients: Differential diagnosis and long episodes. Ann. Neurol.. 2015;77:529–540.
Lam M., et alSchizophrenia Working Group of the Psychiatric Genomics ConsortiumIndonesia Schizophrenia ConsortiumGenetic REsearch on schizophreniA neTwork-China and the Netherlands (GREAT-CN). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet.. 2019;51:1670–1678.
Stahl E. A., et aleQTLGen ConsortiumBIOS ConsortiumBipolar Disorder Working Group of the Psychiatric Genomics Consortium. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet.. 2019;51:793–803.
Ikeda M., et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect. Schizophr. Bull.. 2019;45:824–834.
Stilo S. A., Murray R. M.. Non-genetic factors in schizophrenia. Curr. Psychiatry Rep.. 2019;21:100.
Söderlund J., Wicks S., Jörgensen L., Dalman C.. Comparing cohort incidence of schizophrenia with that of bipolar disorder and affective psychosis in individuals born in Stockholm County 1955-1967. Psychol. Med.. 2015;45:3433–3439.
Chudal R., et al. Perinatal factors and the risk of bipolar disorder in Finland. J. Affect. Disord.. 2014;155:75–80.
Haukvik U. K., et al. Pre- and perinatal hypoxia associated with hippocampus/amygdala volume in bipolar disorder. Psychol. Med.. 2014;44:975–985.
Nosarti C., et al. Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry. 2012;69:E1–E8.
McGrath J., Scott J.. Urban birth and risk of schizophrenia: A worrying example of epidemiology where the data are stronger than the hypotheses. Epidemiol. Psichiatr. Soc.. 2006;15:243–246.
Cannon M., Jones P. B., Murray R. M.. Obstetric complications and schizophrenia: Historical and meta-analytic review. Am. J. Psychiatry. 2002;159:1080–1092.
Kunugi H., Nanko S., Murray R. M.. Obstetric complications and schizophrenia: Prenatal underdevelopment and subsequent neurodevelopmental impairment. Br. J. Psychiatry Suppl.. 2001;40:s25–s29.
Kinney D. K., Yurgelun-Todd D. A., Tohen M., Tramer S.. Pre- and perinatal complications and risk for bipolar disorder: A retrospective study. J. Affect. Disord.. 1998;50:117–124.
Geddes J. R., Lawrie S. M.. Obstetric complications and schizophrenia: A meta-analysis. Br. J. Psychiatry. 1995;167:786–793.
McNeil T. F.. Perinatal risk factors and schizophrenia: Selective review and methodological concerns. Epidemiol. Rev.. 1995;17:107–112.
Brixey S. N., Gallagher B. J. 3rd, McFalls J. A. Jr, Parmelee L. F.. Gestational and neonatal factors in the etiology of schizophrenia. J. Clin. Psychol.. 1993;49:447–456.
Shimizu H., Hirose A., Tatsuno T., Nakamura M., Katsube J.. Pharmacological properties of SM-3997: A new anxioselective anxiolytic candidate. Jpn. J. Pharmacol.. 1987;45:493–500.
GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet.. 2013;45:580–585.
Ursini G., et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med.. 2018;24:792–801.
Peng S., et al. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum. Mol. Genet.. 2017;26:3432–3441.
Hoffmann T. J., et al. Next generation genome-wide association tool: Design and coverage of a high-throughput European-optimized SNP array. Genomics. 2011;98:79–89.
Sander A., Wauer R.. From single-case analysis of neonatal deaths toward a further reduction of the neonatal mortality rate. J. Perinat. Med.. 2018;47:125–133.
Sugai M. K., Gilmour S., Ota E., Shibuya K.. Trends in perinatal mortality and its risk factors in Japan: Analysis of vital registration data, 1979-2010. Sci. Rep.. 2017;7:46681.
Schneider E. B.. Fetal health stagnation: Have health conditions in utero improved in the United States and Western and Northern Europe over the past 150 years?. Soc. Sci. Med.. 2017;179:18–26.
Verstraete E., et al. Healthcare-associated bloodstream infections in a neonatal intensive care unit over a 20-year period (1992-2011): Trends in incidence, pathogens, and mortality. Infect. Control Hosp. Epidemiol.. 2014;35:511–518.
Glinianaia S. V., et al. Temporal changes in key maternal and fetal factors affecting birth outcomes: A 32-year population-based study in an industrial city. BMC Pregnancy Childbirth. 2008;8:39.
Rush D., Alvir J. M., Kenny D. A., Johnson S. S., Horvitz D. G.. The National WIC evaluation: Evaluation of the special supplemental food program for women, infants, and children. III. Historical study of pregnancy outcomes. Am. J. Clin. Nutr.. 1988;48:412–428.
Secolin R., et al. Family-based association study for bipolar affective disorder. Psychiatr. Genet.. 2010;20:126–129.
Charney A. W., et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry. 2017;7:e993.
Hou L., et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum. Mol. Genet.. 2016;25:3383–3394.
Mühleisen T. W., et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun.. 2014;5:3339.
Ruderfer D. M., et alSchizophrenia Working Group of the Psychiatric Genomics ConsortiumBipolar Disorder Working Group of the Psychiatric Genomics ConsortiumCross-Disorder Working Group of the Psychiatric Genomics Consortium. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry. 2014;19:1017–1024.
Li Z., et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet.. 2017;49:1576–1583.
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427.
Chen D. T., et alBiGS. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol. Psychiatry. 2013;18:195–205.
Choi S. W., O’Reilly P. F.. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019;8:giz082.
Ruderfer D. M., et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705–1715.e16.
Jones S. E., et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun.. 2019;10:343.
Dashti H. S., et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun.. 2019;10:1100.
Wang H., et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun.. 2019;10:3503.
de Leeuw C. A., Mooij J. M., Heskes T., Posthuma D.. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol.. 2015;11:e1004219.
Giguère V., et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev.. 1994;8:538–553.
Griffin P., et al. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc. Natl. Acad. Sci. U.S.A.. 2019;116:5102–5107.
Zhang Y., et al. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science. 2015;348:1488–1492.
Solt L. A., Kojetin D. J., Burris T. P.. The REV-ERBs and RORs: Molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem.. 2011;3:623–638.
Guillaumond F., Dardente H., Giguère V., Cermakian N.. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms. 2005;20:391–403.
Sato T. K., et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43:527–537.
Al Shareef S. M., et al. Kleine-Levin syndrome is associated with LMOD3 variants. J. Sleep Res.. 2019;28:e12718.
Cingolani P., et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Schatz U. A., et al. Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria. Neurology. 2018;91:e1690–e1694.
Tillman R., Geller B.. Definitions of rapid, ultrarapid, and ultradian cycling and of episode duration in pediatric and adult bipolar disorders: A proposal to distinguish episodes from cycles. J. Child Adolesc. Psychopharmacol.. 2003;13:267–271.
Groos E., et al. Emerging psychiatric disorders in Kleine-Levin syndrome. J. Sleep Res.. 2018;27:e12690.
Kaplan K. A., et al. Hypersomnia subtypes, sleep and relapse in bipolar disorder. Psychol. Med.. 2015;45:1751–1763.
Grigolon R. B., et al. Hypersomnia and bipolar disorder: A systematic review and meta-analysis of proportion. J. Affect. Disord.. 2019;246:659–666.
Pagani L., et al. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proc. Natl. Acad. Sci. U.S.A.. 2016;113:E754–E761.
Bora E.. Neurocognitive features in clinical subgroups of bipolar disorder: A meta-analysis. J. Affect. Disord.. 2018;229:125–134.
Lima I. M. M., Peckham A. D., Johnson S. L.. Cognitive deficits in bipolar disorders: Implications for emotion. Clin. Psychol. Rev.. 2018;59:126–136.
Lane J. M., et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet.. 2017;49:274–281.
Lewis K. J. S., et al. Comparison of genetic liability for sleep traits among individuals with bipolar disorder I or II and control participants. JAMA Psychiatry. 2019;77:303–310.
Engström M., Latini F., Landtblom A. M.. Neuroimaging in the Kleine-Levin syndrome. Curr. Neurol. Neurosci. Rep.. 2018;18:58.
Hong S. B.. Neuroimaging of narcolepsy and Kleine-Levin syndrome. Sleep Med. Clin.. 2017;12:359–368.
Kas A., Lavault S., Habert M. O., Arnulf I.. Feeling unreal: A functional imaging study in patients with Kleine-Levin syndrome. Brain. 2014;137:2077–2087.
Blume C., Garbazza C., Spitschan M.. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl.). 2019;23:147–156.
Czeisler C. A., Zimmerman J. C., Ronda J. M., Moore-Ede M. C., Weitzman E. D.. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep. 1980;2:329–346.
Carskadon M. A., Dement W. C.. Sleep studies on a 90-minute day. Electroencephalogr. Clin. Neurophysiol.. 1975;39:145–155.
Goldbart A., et al. Narcolepsy and predictors of positive MSLTs in the Wisconsin sleep cohort. Sleep (Basel). 2014;37:1043–1051.
Chen L., Huang Y.-S.. 2019;vol. 2:39.
Gold A. K., Kinrys G.. Treating circadian rhythm disruption in bipolar disorder. Curr. Psychiatry Rep.. 2019;21:14.
Vreeker A., et al. Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder. Pyschol. Med.. 2019;1–9.
doi: 10.1017/S0033291719003416
Ikeda M., et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry. 2018;23:639–647.
Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet.. 2011;43:977–983.
Forstner A. J., et al. Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS One. 2017;12:e0171595.
Ripke S., et alMulticenter Genetic Studies of Schizophrenia ConsortiumPsychosis Endophenotypes International ConsortiumWellcome Trust Case Control Consortium 2. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet.. 2013;45:1150–1159.
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet.. 2011;43:969–976.
Ward J., et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry. 2017;7:1264.
Weber G.. Investigation of metal-species (Ca, Mg, Zn, Fe, Cu, Pb, Cd, Sn) in urine by HPLC-AAS. J. Trace Elem. Electrolytes Health Dis.. 1988;2:61–65.
Tsuchiya K. J., Byrne M., Mortensen P. B.. Risk factors in relation to an emergence of bipolar disorder: A systematic review. Bipolar Disord.. 2003;5:231–242.
Lyall D. M., et al. Low birth weight and features of neuroticism and mood disorder in 83 545 participants of the UK Biobank cohort. BJPsych Open. 2016;2:38–44.
Kikas T., Rull K., Beaumont R. N., Freathy R. M., Laan M.. The effect of genetic variation on the placental transcriptome in humans. Front. Genet.. 2019;10:550.
Brockenshire A.. The “mini-mental state”: A handy tool. Perspectives. 1987;11:7–8.
Horikoshi M., et alCHARGE Consortium Hematology Working GroupEarly Growth Genetics (EGG) Consortium. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538:248–252.
Warrington N. M., et alEGG Consortium. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet.. 2019;51:804–814.
Beaumont R. N., et alEarly Growth Genetics (EGG) Consortium. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet.. 2018;27:742–756.
Zhang G., et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med.. 2017;377:1156–1167.
Srinivasan L., et alEunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Genome-wide association study of sepsis in extremely premature infants. Arch. Dis. Child. Fetal Neonatal Ed.. 2017;102:F439–F445.
Pasqualini J. R., Mercat P., Giambiagi N.. Histone acetylation decreased by estradiol in the MCF-7 human mammary cancer cell line. Breast Cancer Res. Treat.. 1989;14:101–105.
Jiang X., et al. Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol. Psychiatry. 2019;24:613–624.
Purcell S., et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet.. 2007;81:559–575.
Nicolazzi E. L., Iamartino D., Williams J. L.. AffyPipe: An open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics. 2014;30:3118–3119.
Auton A., et al1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.
Delaneau O., Marchini J., Zagury J. F.. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2011;9:179–181.
Delaneau O., Marchini J.1000 Genomes Project Consortium1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat. Commun.. 2014;5:3934.
Howie B. N., Donnelly P., Marchini J.. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet.. 2009;5:e1000529.
Marchini J., Howie B., Myers S., McVean G., Donnelly P.. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet.. 2007;39:906–913.
Watanabe K., Taskesen E., van Bochoven A., Posthuma D.. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun.. 2017;8:1826.
Turner S. D.. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. 2014.
Arnold M., Raffler J., Pfeufer A., Suhre K., Kastenmüller G.. SNiPA: An interactive, genetic variant-centered annotation browser. Bioinformatics. 2015;31:1334–1336.
Hormozdiari F., et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet.. 2016;99:1245–1260.
Zheng J., et alEarly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. LD hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–279.
Li H., Durbin R.. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760.
Wang K., Li M., Hakonarson H.. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res.. 2010;38:e164.
Lee S., Abecasis G. R., Boehnke M., Lin X.. Rare-variant association analysis: Study designs and statistical tests. Am. J. Hum. Genet.. 2014;95:5–23.