Kleine-Levin syndrome is associated with birth difficulties and genetic variants in the


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
23 03 2021
Historique:
entrez: 19 3 2021
pubmed: 20 3 2021
medline: 7 9 2021
Statut: ppublish

Résumé

Kleine-Levin syndrome (KLS) is a rare disorder characterized by severe episodic hypersomnia, with cognitive impairment accompanied by apathy or disinhibition. Pathophysiology is unknown, although imaging studies indicate decreased activity in hypothalamic/thalamic areas during episodes. Familial occurrence is increased, and risk is associated with reports of a difficult birth. We conducted a worldwide case-control genome-wide association study in 673 KLS cases collected over 14 y, and ethnically matched 15,341 control individuals. We found a strong genome-wide significant association (rs71947865, Odds Ratio [OR] = 1.48,

Identifiants

pubmed: 33737391
pii: 2005753118
doi: 10.1073/pnas.2005753118
pmc: PMC7999876
pii:
doi:

Substances chimiques

Cytokines 0
TRANK1 protein, human 0

Banques de données

figshare
['10.6084/m9.figshare.14128475.v2']

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH080957
Pays : United States
Organisme : NIH HHS
ID : S10 OD023452
Pays : United States

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

Kleine D. W.. Periodische Schlafsucht. Eur. Neurol.. 1925;57:305–320.
Levin M.. Periodic somnolence and morbid hunger: A new syndrome. Brain. 1936;59:494–504.
Arnulf I., et al. Kleine-Levin syndrome: A systematic study of 108 patients. Ann. Neurol.. 2008;63:482–493.
Arnulf I., Rico T. J., Mignot E.. Diagnosis, disease course, and management of patients with Kleine-Levin syndrome. Lancet Neurol.. 2012;11:918–928.
Billiard M., Jaussent I., Dauvilliers Y., Besset A.. Recurrent hypersomnia: A review of 339 cases. Sleep Med. Rev.. 2011;15:247–257.
Arnulf I., Zeitzer J. M., File J., Farber N., Mignot E.. Kleine-Levin syndrome: A systematic review of 186 cases in the literature. Brain. 2005;128:2763–2776.
Leu-Semenescu S., et al. Lithium therapy in Kleine-Levin syndrome: An open-label, controlled study in 130 patients. Neurology. 2015;85:1655–1662.
Huang Y. S., et al. Relationship between Kleine-Levin syndrome and upper respiratory infection in Taiwan. Sleep (Basel). 2012;35:123–129.
Nguyen Q. T., et al. Familial Kleine-Levin syndrome: A specific entity?. Sleep (Basel). 2016;39:1535–1542.
Peraita-Adrados R., Vicario J. L., Tafti M., García de León M., Billiard M.. Monozygotic twins affected with Kleine-Levin syndrome. Sleep (Basel). 2012;35:595–596.
Habra O., Heinzer R., Haba-Rubio J., Rossetti A. O.. Prevalence and mimics of Kleine-Levin syndrome: A survey in French-speaking Switzerland. J. Clin. Sleep Med.. 2016;12:1083–1087.
Dauvilliers Y., et al. Kleine-Levin syndrome: An autoimmune hypothesis based on clinical and genetic analyses. Neurology. 2002;59:1739–1745.
Lavault S., et al. Kleine-Levin syndrome in 120 patients: Differential diagnosis and long episodes. Ann. Neurol.. 2015;77:529–540.
Lam M., et alSchizophrenia Working Group of the Psychiatric Genomics ConsortiumIndonesia Schizophrenia ConsortiumGenetic REsearch on schizophreniA neTwork-China and the Netherlands (GREAT-CN). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet.. 2019;51:1670–1678.
Stahl E. A., et aleQTLGen ConsortiumBIOS ConsortiumBipolar Disorder Working Group of the Psychiatric Genomics Consortium. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet.. 2019;51:793–803.
Ikeda M., et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect. Schizophr. Bull.. 2019;45:824–834.
Stilo S. A., Murray R. M.. Non-genetic factors in schizophrenia. Curr. Psychiatry Rep.. 2019;21:100.
Söderlund J., Wicks S., Jörgensen L., Dalman C.. Comparing cohort incidence of schizophrenia with that of bipolar disorder and affective psychosis in individuals born in Stockholm County 1955-1967. Psychol. Med.. 2015;45:3433–3439.
Chudal R., et al. Perinatal factors and the risk of bipolar disorder in Finland. J. Affect. Disord.. 2014;155:75–80.
Haukvik U. K., et al. Pre- and perinatal hypoxia associated with hippocampus/amygdala volume in bipolar disorder. Psychol. Med.. 2014;44:975–985.
Nosarti C., et al. Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry. 2012;69:E1–E8.
McGrath J., Scott J.. Urban birth and risk of schizophrenia: A worrying example of epidemiology where the data are stronger than the hypotheses. Epidemiol. Psichiatr. Soc.. 2006;15:243–246.
Cannon M., Jones P. B., Murray R. M.. Obstetric complications and schizophrenia: Historical and meta-analytic review. Am. J. Psychiatry. 2002;159:1080–1092.
Kunugi H., Nanko S., Murray R. M.. Obstetric complications and schizophrenia: Prenatal underdevelopment and subsequent neurodevelopmental impairment. Br. J. Psychiatry Suppl.. 2001;40:s25–s29.
Kinney D. K., Yurgelun-Todd D. A., Tohen M., Tramer S.. Pre- and perinatal complications and risk for bipolar disorder: A retrospective study. J. Affect. Disord.. 1998;50:117–124.
Geddes J. R., Lawrie S. M.. Obstetric complications and schizophrenia: A meta-analysis. Br. J. Psychiatry. 1995;167:786–793.
McNeil T. F.. Perinatal risk factors and schizophrenia: Selective review and methodological concerns. Epidemiol. Rev.. 1995;17:107–112.
Brixey S. N., Gallagher B. J. 3rd, McFalls J. A. Jr, Parmelee L. F.. Gestational and neonatal factors in the etiology of schizophrenia. J. Clin. Psychol.. 1993;49:447–456.
Shimizu H., Hirose A., Tatsuno T., Nakamura M., Katsube J.. Pharmacological properties of SM-3997: A new anxioselective anxiolytic candidate. Jpn. J. Pharmacol.. 1987;45:493–500.
GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet.. 2013;45:580–585.
Ursini G., et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med.. 2018;24:792–801.
Peng S., et al. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum. Mol. Genet.. 2017;26:3432–3441.
Hoffmann T. J., et al. Next generation genome-wide association tool: Design and coverage of a high-throughput European-optimized SNP array. Genomics. 2011;98:79–89.
Sander A., Wauer R.. From single-case analysis of neonatal deaths toward a further reduction of the neonatal mortality rate. J. Perinat. Med.. 2018;47:125–133.
Sugai M. K., Gilmour S., Ota E., Shibuya K.. Trends in perinatal mortality and its risk factors in Japan: Analysis of vital registration data, 1979-2010. Sci. Rep.. 2017;7:46681.
Schneider E. B.. Fetal health stagnation: Have health conditions in utero improved in the United States and Western and Northern Europe over the past 150 years?. Soc. Sci. Med.. 2017;179:18–26.
Verstraete E., et al. Healthcare-associated bloodstream infections in a neonatal intensive care unit over a 20-year period (1992-2011): Trends in incidence, pathogens, and mortality. Infect. Control Hosp. Epidemiol.. 2014;35:511–518.
Glinianaia S. V., et al. Temporal changes in key maternal and fetal factors affecting birth outcomes: A 32-year population-based study in an industrial city. BMC Pregnancy Childbirth. 2008;8:39.
Rush D., Alvir J. M., Kenny D. A., Johnson S. S., Horvitz D. G.. The National WIC evaluation: Evaluation of the special supplemental food program for women, infants, and children. III. Historical study of pregnancy outcomes. Am. J. Clin. Nutr.. 1988;48:412–428.
Secolin R., et al. Family-based association study for bipolar affective disorder. Psychiatr. Genet.. 2010;20:126–129.
Charney A. W., et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry. 2017;7:e993.
Hou L., et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum. Mol. Genet.. 2016;25:3383–3394.
Mühleisen T. W., et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun.. 2014;5:3339.
Ruderfer D. M., et alSchizophrenia Working Group of the Psychiatric Genomics ConsortiumBipolar Disorder Working Group of the Psychiatric Genomics ConsortiumCross-Disorder Working Group of the Psychiatric Genomics Consortium. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry. 2014;19:1017–1024.
Li Z., et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet.. 2017;49:1576–1583.
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427.
Chen D. T., et alBiGS. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol. Psychiatry. 2013;18:195–205.
Choi S. W., O’Reilly P. F.. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019;8:giz082.
Ruderfer D. M., et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705–1715.e16.
Jones S. E., et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun.. 2019;10:343.
Dashti H. S., et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun.. 2019;10:1100.
Wang H., et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun.. 2019;10:3503.
de Leeuw C. A., Mooij J. M., Heskes T., Posthuma D.. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol.. 2015;11:e1004219.
Giguère V., et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev.. 1994;8:538–553.
Griffin P., et al. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc. Natl. Acad. Sci. U.S.A.. 2019;116:5102–5107.
Zhang Y., et al. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science. 2015;348:1488–1492.
Solt L. A., Kojetin D. J., Burris T. P.. The REV-ERBs and RORs: Molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem.. 2011;3:623–638.
Guillaumond F., Dardente H., Giguère V., Cermakian N.. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms. 2005;20:391–403.
Sato T. K., et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43:527–537.
Al Shareef S. M., et al. Kleine-Levin syndrome is associated with LMOD3 variants. J. Sleep Res.. 2019;28:e12718.
Cingolani P., et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Schatz U. A., et al. Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria. Neurology. 2018;91:e1690–e1694.
Tillman R., Geller B.. Definitions of rapid, ultrarapid, and ultradian cycling and of episode duration in pediatric and adult bipolar disorders: A proposal to distinguish episodes from cycles. J. Child Adolesc. Psychopharmacol.. 2003;13:267–271.
Groos E., et al. Emerging psychiatric disorders in Kleine-Levin syndrome. J. Sleep Res.. 2018;27:e12690.
Kaplan K. A., et al. Hypersomnia subtypes, sleep and relapse in bipolar disorder. Psychol. Med.. 2015;45:1751–1763.
Grigolon R. B., et al. Hypersomnia and bipolar disorder: A systematic review and meta-analysis of proportion. J. Affect. Disord.. 2019;246:659–666.
Pagani L., et al. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proc. Natl. Acad. Sci. U.S.A.. 2016;113:E754–E761.
Bora E.. Neurocognitive features in clinical subgroups of bipolar disorder: A meta-analysis. J. Affect. Disord.. 2018;229:125–134.
Lima I. M. M., Peckham A. D., Johnson S. L.. Cognitive deficits in bipolar disorders: Implications for emotion. Clin. Psychol. Rev.. 2018;59:126–136.
Lane J. M., et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet.. 2017;49:274–281.
Lewis K. J. S., et al. Comparison of genetic liability for sleep traits among individuals with bipolar disorder I or II and control participants. JAMA Psychiatry. 2019;77:303–310.
Engström M., Latini F., Landtblom A. M.. Neuroimaging in the Kleine-Levin syndrome. Curr. Neurol. Neurosci. Rep.. 2018;18:58.
Hong S. B.. Neuroimaging of narcolepsy and Kleine-Levin syndrome. Sleep Med. Clin.. 2017;12:359–368.
Kas A., Lavault S., Habert M. O., Arnulf I.. Feeling unreal: A functional imaging study in patients with Kleine-Levin syndrome. Brain. 2014;137:2077–2087.
Blume C., Garbazza C., Spitschan M.. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl.). 2019;23:147–156.
Czeisler C. A., Zimmerman J. C., Ronda J. M., Moore-Ede M. C., Weitzman E. D.. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep. 1980;2:329–346.
Carskadon M. A., Dement W. C.. Sleep studies on a 90-minute day. Electroencephalogr. Clin. Neurophysiol.. 1975;39:145–155.
Goldbart A., et al. Narcolepsy and predictors of positive MSLTs in the Wisconsin sleep cohort. Sleep (Basel). 2014;37:1043–1051.
Chen L., Huang Y.-S.. 2019;vol. 2:39.
Gold A. K., Kinrys G.. Treating circadian rhythm disruption in bipolar disorder. Curr. Psychiatry Rep.. 2019;21:14.
Vreeker A., et al. Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder. Pyschol. Med.. 2019;1–9.
doi: 10.1017/S0033291719003416
Ikeda M., et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry. 2018;23:639–647.
Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet.. 2011;43:977–983.
Forstner A. J., et al. Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS One. 2017;12:e0171595.
Ripke S., et alMulticenter Genetic Studies of Schizophrenia ConsortiumPsychosis Endophenotypes International ConsortiumWellcome Trust Case Control Consortium 2. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet.. 2013;45:1150–1159.
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet.. 2011;43:969–976.
Ward J., et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry. 2017;7:1264.
Weber G.. Investigation of metal-species (Ca, Mg, Zn, Fe, Cu, Pb, Cd, Sn) in urine by HPLC-AAS. J. Trace Elem. Electrolytes Health Dis.. 1988;2:61–65.
Tsuchiya K. J., Byrne M., Mortensen P. B.. Risk factors in relation to an emergence of bipolar disorder: A systematic review. Bipolar Disord.. 2003;5:231–242.
Lyall D. M., et al. Low birth weight and features of neuroticism and mood disorder in 83 545 participants of the UK Biobank cohort. BJPsych Open. 2016;2:38–44.
Kikas T., Rull K., Beaumont R. N., Freathy R. M., Laan M.. The effect of genetic variation on the placental transcriptome in humans. Front. Genet.. 2019;10:550.
Brockenshire A.. The “mini-mental state”: A handy tool. Perspectives. 1987;11:7–8.
Horikoshi M., et alCHARGE Consortium Hematology Working GroupEarly Growth Genetics (EGG) Consortium. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538:248–252.
Warrington N. M., et alEGG Consortium. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet.. 2019;51:804–814.
Beaumont R. N., et alEarly Growth Genetics (EGG) Consortium. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet.. 2018;27:742–756.
Zhang G., et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med.. 2017;377:1156–1167.
Srinivasan L., et alEunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Genome-wide association study of sepsis in extremely premature infants. Arch. Dis. Child. Fetal Neonatal Ed.. 2017;102:F439–F445.
Pasqualini J. R., Mercat P., Giambiagi N.. Histone acetylation decreased by estradiol in the MCF-7 human mammary cancer cell line. Breast Cancer Res. Treat.. 1989;14:101–105.
Jiang X., et al. Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol. Psychiatry. 2019;24:613–624.
Purcell S., et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet.. 2007;81:559–575.
Nicolazzi E. L., Iamartino D., Williams J. L.. AffyPipe: An open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics. 2014;30:3118–3119.
Auton A., et al1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.
Delaneau O., Marchini J., Zagury J. F.. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2011;9:179–181.
Delaneau O., Marchini J.1000 Genomes Project Consortium1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat. Commun.. 2014;5:3934.
Howie B. N., Donnelly P., Marchini J.. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet.. 2009;5:e1000529.
Marchini J., Howie B., Myers S., McVean G., Donnelly P.. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet.. 2007;39:906–913.
Watanabe K., Taskesen E., van Bochoven A., Posthuma D.. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun.. 2017;8:1826.
Turner S. D.. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. 2014.
Arnold M., Raffler J., Pfeufer A., Suhre K., Kastenmüller G.. SNiPA: An interactive, genetic variant-centered annotation browser. Bioinformatics. 2015;31:1334–1336.
Hormozdiari F., et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet.. 2016;99:1245–1260.
Zheng J., et alEarly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. LD hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–279.
Li H., Durbin R.. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760.
Wang K., Li M., Hakonarson H.. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res.. 2010;38:e164.
Lee S., Abecasis G. R., Boehnke M., Lin X.. Rare-variant association analysis: Study designs and statistical tests. Am. J. Hum. Genet.. 2014;95:5–23.

Auteurs

Aditya Ambati (A)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Ryan Hillary (R)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Smaranda Leu-Semenescu (S)

Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Sorbonne University, Institut Hospitalo-Universitaire A Institut du Cerveau et de la Moelle, F-75013 Paris, France.

Hanna M Ollila (HM)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Ling Lin (L)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Emmanuel H During (EH)

Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305.
Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305.

Neal Farber (N)

Kleine-Levin Syndrome Foundation, Boston, MA 02468.

Thomas J Rico (TJ)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Juliette Faraco (J)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Eileen Leary (E)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304.

Andrea N Goldstein-Piekarski (AN)

Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305.
Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304.

Yu-Shu Huang (YS)

Department of Child Psychiatry, Chang Gung Memorial Hospital and University, Taoyuan 33305, Taiwan.
Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, 33305, Taiwan.

Fang Han (F)

Department of Pulmonary Medicine, Peking University People's Hospital, Beijing 100044, China.

Yakov Sivan (Y)

Safra Children's Hospital, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel.

Michel Lecendreux (M)

Pediatric Sleep Center, Hospital Robert Debre, France Center for Narcolepsy and Idiopathic Hypersomnia, 75019 Paris, France.
National Reference Center, Hospital Robert Debre, France Center for Narcolepsy and Idiopathic Hypersomnia, 75019 Paris, France.

Pauline Dodet (P)

Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Sorbonne University, Institut Hospitalo-Universitaire A Institut du Cerveau et de la Moelle, F-75013 Paris, France.

Makoto Honda (M)

Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.

Natan Gadoth (N)

Department of Neurology, Maynei Hayeshua Medical Center, 5154475 Bnei Barak, Israel.
The Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel Aviv, Israel.

Sona Nevsimalova (S)

Department of Neurology, 1st Faculty of Medicine, General Teaching Hospital, Charles University, Prague 116 36, Czech Republic.

Fabio Pizza (F)

Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy.
Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy.

Takashi Kanbayashi (T)

International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-0005, Japan.

Rosa Peraita-Adrados (R)

Hospital Universitario e Instituto de Investigación Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Guy D Leschziner (GD)

Sleep Disorders Centre, Guy's Hospital, SE1 9RT London, United Kingdom.
Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, United Kingdom.

Rosa Hasan (R)

Institute of Psychiatry, Hospital das Clinicas, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-010, Brazil.

Francesca Canellas (F)

Fundació Institut d'Investigació Sanitària Illes Balears, Hospital Universitari Son Espases, 07120 Palma, Spain.

Kazuhiko Kume (K)

Department of Neuropharmacology, Nagoya City University, Nagoya 467-8601, Japan.

Makrina Daniilidou (M)

Department of Neuroscience, Uppsala University, Uppsala 752 36, Sweden.
Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden.

Patrice Bourgin (P)

Sleep Disorders Center, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France.

David Rye (D)

Department of Neurology, Emory University, Atlanta, GA 30322.

José L Vicario (JL)

Histocompatibility Department, Blood Center of the Community of Madrid, 28032 Madrid, Spain.

Birgit Hogl (B)

Department of Neurology, Innsbruck Medical University, 6020 Innsbruck, Austria.

Seung Chul Hong (SC)

Department of Neuropsychiatry, College of Medicine, St. Vincent's Hospital, Catholic University of Korea, Seoul 16247, Korea.

Guiseppe Plazzi (G)

Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy.
Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy.

Geert Mayer (G)

Hephata Klinik, Philipps Universität Marburg, 35037 Marburg, Germany.

Anne Marie Landtblom (AM)

Department of Neuroscience, Uppsala University, Uppsala 752 36, Sweden.
Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden.

Yves Dauvilliers (Y)

Narcolepsy-Rare Hypersomnias, Sleep Unit, Department of Neurology, National Reference Centre for Orphan Diseases, Centre Hospitalier Universitaire de Montpellier, Universitaire de Montpellier, 34000 Montpellier, France.
Institute for Neurosciences of Montpellier, Universitaire de Montpellier, INSERM, 34000 Montpellier, France.

Isabelle Arnulf (I)

Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Sorbonne University, Institut Hospitalo-Universitaire A Institut du Cerveau et de la Moelle, F-75013 Paris, France.

Emmanuel Jean-Marie Mignot (EJ)

Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304; mignot@stanford.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH