Divergences on expected pneumonia cases during the COVID-19 epidemic in Catalonia: a time-series analysis of primary care electronic health records covering about 6 million people.
COVID-19
Coronavirus
Electronic health records
Pneumonia;public health surveillance
Primary care
Journal
BMC infectious diseases
ISSN: 1471-2334
Titre abrégé: BMC Infect Dis
Pays: England
ID NLM: 100968551
Informations de publication
Date de publication:
20 Mar 2021
20 Mar 2021
Historique:
received:
08
02
2021
accepted:
09
03
2021
entrez:
20
3
2021
pubmed:
21
3
2021
medline:
24
3
2021
Statut:
epublish
Résumé
Pneumonia is one of the complications of COVID-19. Primary care electronic health records (EHR) have shown the utility as a surveillance system. We therefore analyse the trends of pneumonia during two waves of COVID-19 pandemic in order to use it as a clinical surveillance system and an early indicator of severity. Time series analysis of pneumonia cases, from January 2014 to December 2020. We collected pneumonia diagnoses from primary care EHR, a software system covering > 6 million people in Catalonia (Spain). We compared the trend of pneumonia in the season 2019-2020 with that in the previous years. We estimated the expected pneumonia cases with data from 2014 to 2018 using a time series regression adjusted by seasonality and influenza epidemics. Between 4 March and 5 May 2020, 11,704 excess pneumonia cases (95% CI: 9909 to 13,498) were identified. Previously, we identified an excess from January to March 2020 in the population older than 15 years of 20%. We observed another excess pneumonia period from 22 october to 15 november of 1377 excess cases (95% CI: 665 to 2089). In contrast, we observed two great periods with reductions of pneumonia cases in children, accounting for 131 days and 3534 less pneumonia cases (95% CI, 1005 to 6064) from March to July; and 54 days and 1960 less pneumonia cases (95% CI 917 to 3002) from October to December. Diagnoses of pneumonia from the EHR could be used as an early and low cost surveillance system to monitor the spread of COVID-19.
Sections du résumé
BACKGROUND
BACKGROUND
Pneumonia is one of the complications of COVID-19. Primary care electronic health records (EHR) have shown the utility as a surveillance system. We therefore analyse the trends of pneumonia during two waves of COVID-19 pandemic in order to use it as a clinical surveillance system and an early indicator of severity.
METHODS
METHODS
Time series analysis of pneumonia cases, from January 2014 to December 2020. We collected pneumonia diagnoses from primary care EHR, a software system covering > 6 million people in Catalonia (Spain). We compared the trend of pneumonia in the season 2019-2020 with that in the previous years. We estimated the expected pneumonia cases with data from 2014 to 2018 using a time series regression adjusted by seasonality and influenza epidemics.
RESULTS
RESULTS
Between 4 March and 5 May 2020, 11,704 excess pneumonia cases (95% CI: 9909 to 13,498) were identified. Previously, we identified an excess from January to March 2020 in the population older than 15 years of 20%. We observed another excess pneumonia period from 22 october to 15 november of 1377 excess cases (95% CI: 665 to 2089). In contrast, we observed two great periods with reductions of pneumonia cases in children, accounting for 131 days and 3534 less pneumonia cases (95% CI, 1005 to 6064) from March to July; and 54 days and 1960 less pneumonia cases (95% CI 917 to 3002) from October to December.
CONCLUSIONS
CONCLUSIONS
Diagnoses of pneumonia from the EHR could be used as an early and low cost surveillance system to monitor the spread of COVID-19.
Identifiants
pubmed: 33740907
doi: 10.1186/s12879-021-05985-0
pii: 10.1186/s12879-021-05985-0
pmc: PMC7979451
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
283Références
European Centre for Disease Prevention and Control. Novel coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK – sixth update – 12 March 2020. Stockholm: ECDC; 2020.
COVID-19 Map - Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html . Accessed 11 Dec 2020.
Byambasuren O, Cardona M, Bell K, et al. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. J Assoc Med Microbiol Infect Dis Can (JAMMI). 2020;5(4):223–34. .
Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM, Lau SK, Anderson DE, Chan KS, Tan TY, Ng TY, Cui L, Said Z, Kurupatham L, Chen MIC, Chan M, Vasoo S, Wang LF, Tan BH, Lin RTP, Lee VJM, Leo YS, Lye DC, for the Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore [published correction appears in JAMA. 2020 Apr 21;323(15):1510]. JAMA. 2020;323(15):1488–94. https://doi.org/10.1001/jama.2020.3204 .
doi: 10.1001/jama.2020.3204
pubmed: 32125362
pmcid: 7054855
Sagnelli C, Celia B, Monari C, Cirillo S, de Angelis G, Bianco A, Coppola N. Management of SARS-CoV-2 pneumonia. J Med Virol. 2021;93(3):1276–87. https://doi.org/10.1002/jmv.26470 .
doi: 10.1002/jmv.26470
pubmed: 32856728
Prieto-Alhambra D, Balló E, Coma E, et al. Filling the gaps in the characterization of the clinical management of COVID-19: 30-day hospital admission and fatality rates in a cohort of 118 150 cases diagnosed in outpatient settings in Spain. Int J Epidemiol. 2021;49(6):1930–9.
Salzberger B, Buder F, Lampl B, et al. Epidemiology of SARS-CoV-2. Infection. 2020;1–7. [published online ahead of print, 2020 Oct 8]
Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, Hu Q, Xia L. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306–9. https://doi.org/10.1007/s00330-020-06731-x .
doi: 10.1007/s00330-020-06731-x
pubmed: 32055945
Bernard Stoecklin S, Rolland P, Silue Y, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Euro Surveill. 2020;25(6):2000094.
doi: 10.2807/1560-7917.ES.2020.25.6.2000094
Coma Redon E, Mora N, Prats-Uribe A, et al. Excess cases of influenza and the coronavirus epidemic in Catalonia: a time-series analysis of primary-care electronic medical records covering over 6 million people. BMJ Open. 2020;10:e039369.
doi: 10.1136/bmjopen-2020-039369
Boletín oficial del estado (BOE). Real Decreto 463/2020, de 14 marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-3692 (Accessed 15 May 2020).
Han E, Tan MMJ, Turk E, Sridhar D, Leung GM, Shibuya K, Asgari N, Oh J, García-Basteiro AL, Hanefeld J, Cook AR, Hsu LY, Teo YY, Heymann D, Clark H, McKee M, Legido-Quigley H. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet. 2020;396(10261):1525–34. https://doi.org/10.1016/S0140-6736(20)32007-9 .
doi: 10.1016/S0140-6736(20)32007-9
pubmed: 32979936
pmcid: 7515628
Closas P, Coma E, Méndez L. Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test. BMC Med Inform Decis Mak. 2012;12:112 Published 2012 Oct 3.
doi: 10.1186/1472-6947-12-112
Bolíbar B, Fina Avilés F, Morros R, Garcia-Gil Mdel M, Hermosilla E, Ramos R, Rosell M, Rodríguez J, Medina M, Calero S, Prieto-Alhambra D, Grupo SIDIAP. Base de datos SIDIAP: La historia clínica informatizada de Atención Primaria como fuente de información para la investigación epidemiológica. Med Clin (Barc). 2012;138(14):617–21. https://doi.org/10.1016/j.medcli.2012.01.020 .
doi: 10.1016/j.medcli.2012.01.020
R Core Team. R software: version 3.5.1. R Found Stat Comput, 2018.
CDC COVID-19 Response Team, Jorden MA, Rudman SL, et al. Evidence for limited early spread of COVID-19 within the United States, January-February 2020. MMWR Morb Mortal Wkly Rep. 2020;69(22):680–4 Published 2020 Jun 5.
doi: 10.15585/mmwr.mm6922e1
Chavarria-Miró G, Anfruns-Estrada E, Guix S, et al. Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. MedRxiv 2020.06.13.20129627. https://doi.org/10.1101/2020.06.13.20129627 .
La Rosa G, Iaconelli M, Mancini P, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020;736:139652. https://doi.org/10.1016/j.scitotenv.2020.139652 .
doi: 10.1016/j.scitotenv.2020.139652
pubmed: 32464333
pmcid: 7245320
Instituto de Salud Carlos III. Vigilancia de los excesos de mortalidad por todas las causas: MoMo:: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/MoMo/Documents/informesMoMo2020/MoMo_Situacion%20a%209%20de%20diciembre_CNE.pdf (Accessed 15 Dec 2020).
Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109(6):1088–95. https://doi.org/10.1111/apa.15270 .
doi: 10.1111/apa.15270
pubmed: 32202343
Kuitunen I, Artama M, Mäkelä L, Backman K, Heiskanen-Kosma T, Renko M. Effect of social distancing due to the COVID-19 pandemic on the incidence of viral respiratory tract infections in children in Finland during early 2020. Pediatr Infect Dis J. 2020;39(12):e423–7. https://doi.org/10.1097/INF.0000000000002845 .
doi: 10.1097/INF.0000000000002845
pubmed: 32773660
Yeoh DK, Foley DA, Minney-Smith CA, et al. The impact of COVID-19 public health measures on detections of influenza and respiratory syncytial virus in children during the 2020 Australian winter [published online ahead of print, 2020 Sep 28]. Clin Infect Dis. 2020:ciaa1475.
Pinky L, Dobrovolny HM. Coinfections of the respiratory tract: viral competition for resources. PLoS One. 2016;11(5):e0155589 Published 2016 May 19.
doi: 10.1371/journal.pone.0155589
IDESCAT Territorial and demographic indicators. Estructura per edats, envelliment I dependència, 2020: https://www.idescat.cat/pub/?id=inddt&n=915&lang=en (Accessed 24 Nov 2020).
Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489–93. https://doi.org/10.1126/science.abb3221 .
doi: 10.1126/science.abb3221
pubmed: 32179701
pmcid: 7164387
Violán C, Foguet-Boreu Q, Fernández-Bertolín S, Guisado-Clavero M, Cabrera-Bean M, Formiga F, Valderas JM, Roso-Llorach A. Soft clustering using real-world data for the identification of multimorbidity patterns in an elderly population: cross-sectional study in a Mediterranean population. BMJ Open. 2019;9(8):e029594. https://doi.org/10.1136/bmjopen-2019-029594 .
doi: 10.1136/bmjopen-2019-029594
pubmed: 31471439
pmcid: 6719769