Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo.
Animals
Brain
/ drug effects
Drug Evaluation, Preclinical
Endosomes
/ drug effects
Gain of Function Mutation
Gene Knock-In Techniques
Humans
Indazoles
/ pharmacology
Kidney
/ drug effects
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
/ antagonists & inhibitors
Lung
/ drug effects
Lysosomes
/ drug effects
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitochondrial Proteins
/ metabolism
Organ Specificity
Parkinson Disease
/ enzymology
Phosphorylation
/ drug effects
Point Mutation
Protein Kinase Inhibitors
/ pharmacology
Protein Processing, Post-Translational
/ drug effects
Proteome
/ drug effects
Pyrimidines
/ pharmacology
Random Allocation
rab GTP-Binding Proteins
/ metabolism
Journal
Molecular neurodegeneration
ISSN: 1750-1326
Titre abrégé: Mol Neurodegener
Pays: England
ID NLM: 101266600
Informations de publication
Date de publication:
19 03 2021
19 03 2021
Historique:
received:
16
09
2020
accepted:
04
03
2021
entrez:
20
3
2021
pubmed:
21
3
2021
medline:
16
12
2021
Statut:
epublish
Résumé
The most common mutation in the Leucine-rich repeat kinase 2 gene (LRRK2), G2019S, causes familial Parkinson's Disease (PD) and renders the encoded protein kinase hyperactive. While targeting LRRK2 activity is currently being tested in clinical trials as a therapeutic avenue for PD, to date, the molecular effects of chronic LRRK2 inhibition have not yet been examined in vivo. We evaluated the utility of newly available phospho-antibodies for Rab substrates and LRRK2 autophosphorylation to examine the pharmacodynamic response to treatment with the potent and specific LRRK2 inhibitor, MLi-2, in brain and peripheral tissue in G2019S LRRK2 knock-in mice. We report higher sensitivity of LRRK2 autophosphorylation to MLi-2 treatment and slower recovery in washout conditions compared to Rab GTPases phosphorylation, and we identify pS106 Rab12 as a robust readout of downstream LRRK2 activity across tissues. The downstream effects of long-term chronic LRRK2 inhibition in vivo were evaluated in G2019S LRRK2 knock-in mice by phospho- and total proteomic analyses following an in-diet administration of MLi-2 for 10 weeks. We observed significant alterations in endolysosomal and trafficking pathways in the kidney that were sensitive to MLi-2 treatment and were validated biochemically. Furthermore, a subtle but distinct biochemical signature affecting mitochondrial proteins was observed in brain tissue in the same animals that, again, was reverted by kinase inhibition. Proteomic analysis in the lung did not detect any major pathway of dysregulation that would be indicative of pulmonary impairment. This is the first study to examine the molecular underpinnings of chronic LRRK2 inhibition in a preclinical in vivo PD model and highlights cellular processes that may be influenced by therapeutic strategies aimed at restoring LRRK2 physiological activity in PD patients.
Identifiants
pubmed: 33741046
doi: 10.1186/s13024-021-00441-8
pii: 10.1186/s13024-021-00441-8
pmc: PMC7977595
doi:
Substances chimiques
2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine
0
Indazoles
0
Mitochondrial Proteins
0
Protein Kinase Inhibitors
0
Proteome
0
Pyrimidines
0
LRRK2 protein, human
EC 2.7.11.1
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
EC 2.7.11.1
rab12 protein, mouse
EC 3.6.1.-
rab GTP-Binding Proteins
EC 3.6.5.2
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17Subventions
Organisme : Medical Research Council
Pays : United Kingdom
Références
Elife. 2019 Oct 30;8:
pubmed: 31663853
Chem Res Toxicol. 2019 Jun 17;32(6):1115-1122
pubmed: 30950278
Biochim Biophys Acta. 2014 Jun;1840(6):2025-31
pubmed: 24576675
Nat Med. 2010 Sep;16(9):998-1000
pubmed: 20729864
Structure. 2020 Apr 7;28(4):406-417.e6
pubmed: 32017888
J Pharmacol Exp Ther. 2021 Apr;377(1):11-19
pubmed: 33509901
Neurobiol Dis. 2006 Aug;23(2):329-41
pubmed: 16750377
J Med Chem. 2015 Sep 10;58(17):6733-46
pubmed: 25915084
Sci Rep. 2016 Sep 23;6:33897
pubmed: 27658356
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9115-E9124
pubmed: 30209220
Biochem Soc Trans. 2019 Dec 20;47(6):1581-1595
pubmed: 31769472
Biochem Soc Trans. 2019 Apr 30;47(2):651-661
pubmed: 30837320
J Biol Chem. 2015 Aug 7;290(32):19433-44
pubmed: 26078453
Hum Mol Genet. 2018 Sep 15;27(18):3257-3271
pubmed: 29917075
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W193-200
pubmed: 17478515
J Pharmacol Exp Ther. 2015 Dec;355(3):397-409
pubmed: 26407721
Neurotherapeutics. 2014 Oct;11(4):738-50
pubmed: 24957201
Cell Commun Signal. 2020 Jun 11;18(1):92
pubmed: 32527260
J Biol Chem. 2014 Aug 1;289(31):21386-400
pubmed: 24942733
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
EMBO J. 2018 Jan 4;37(1):1-18
pubmed: 29212815
EMBO J. 2020 Sep 15;39(18):e104494
pubmed: 32643832
Hum Mol Genet. 2017 Nov 15;26(22):4340-4351
pubmed: 28973664
Neurology. 2010 Nov 30;75(22):2017-20
pubmed: 21115957
NPJ Parkinsons Dis. 2018 Apr 19;4:13
pubmed: 29707617
Sci Transl Med. 2015 Feb 4;7(273):273ra15
pubmed: 25653221
Biochem J. 2020 May 15;477(9):1651-1668
pubmed: 32227113
Neurobiol Dis. 2014 Feb;62:381-6
pubmed: 24148854
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Toxicology. 2018 Feb 15;395:15-22
pubmed: 29307545
Cell Res. 2014 May;24(5):576-94
pubmed: 24662485
Nat Rev Neurosci. 2010 Dec;11(12):791-7
pubmed: 21088684
Neurobiol Dis. 2013 Oct;58:183-90
pubmed: 23747310
J Biomed Sci. 2018 May 22;25(1):43
pubmed: 29788979
Biochem J. 2018 Jan 2;475(1):1-22
pubmed: 29127256
Mov Disord. 2016 Oct;31(10):1543-1550
pubmed: 27297049
Biochem Soc Trans. 2019 Apr 30;47(2):663-670
pubmed: 30837321
Traffic. 2013 Jul;14(7):739-48
pubmed: 23387372
Hum Mol Genet. 2007 Jan 15;16(2):223-32
pubmed: 17200152
Lancet Neurol. 2008 Jul;7(7):583-90
pubmed: 18539534
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9879-84
pubmed: 20457918
Exp Neurol. 2017 Dec;298(Pt B):236-245
pubmed: 28764903
J Transl Med. 2009 Mar 17;7:17
pubmed: 19292913
Science. 2018 Apr 6;360(6384):36-37
pubmed: 29622645
Sci Adv. 2020 Nov 11;6(46):
pubmed: 33177079
Sci Transl Med. 2020 Apr 22;12(540):
pubmed: 32321864