ROCK inhibitors enhance the production of large lipid-enriched 3D organoids of 3T3-L1 cells.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 03 2021
Historique:
received: 12 10 2020
accepted: 23 02 2021
entrez: 22 3 2021
pubmed: 23 3 2021
medline: 15 12 2021
Statut: epublish

Résumé

Since the recent discovery of prostaglandin-associated peri-orbitopathy, a great deal of interest has developed concerning the side effects of anti-glaucoma medications toward periocular fatty tissue, especially their adipogenesis. Two- or three-dimension (2D or 3D) cultures of the 3T3-L1 cells were employed to elucidate the effects of the Rho-associated coiled-coil containing protein kinase inhibitor (ROCK-i) the anti-glaucoma drug, Ripasudil, and other ROCK-i, such as Y27632 on adipogenesis. Ultrastructure by electron microscopy and physical stiffness measurements by a micro-squeezer demonstrated the 3D organoids had essentially matured during the 7-day culture. The effects of ROCK-i on 3D organoid sizes, lipid staining, the mRNA expression of adipogenesis related genes, Pparγ, Cebpa and Leptin, and extracellular matrix (ECM) including collagen (COL) 1, 4 and 6, and fibronectin, and physical stiffness were then conducted. Upon adipogenesis, the sizes, lipid staining and mRNA expressions of adipogenesis related genes, Col 4 and Col 6 were dramatically increased, and were further enhanced by ROCK-i. Micro-squeezer analysis demonstrated that adipogenesis resulted in a marked less stiffed 3D organoid and this was further enhanced by ROCK-i. Our present study indicates that ROCK-i significantly enhanced the production of large lipid-enriched 3T3-L1 3D organoids.

Identifiants

pubmed: 33750898
doi: 10.1038/s41598-021-84955-7
pii: 10.1038/s41598-021-84955-7
pmc: PMC7943807
doi:

Substances chimiques

Protein Kinase Inhibitors 0
rho-Associated Kinases EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5479

Références

Sci Rep. 2018 Feb 6;8(1):2477
pubmed: 29410516
J Cell Physiol. 2014 Jul;229(7):927-42
pubmed: 24318513
Dis Model Mech. 2018 May 31;11(6):
pubmed: 29728408
Small GTPases. 2014;5(2):10
pubmed: 25469537
Curr Eye Res. 2013 Jan;38(1):70-4
pubmed: 23078159
Invest Ophthalmol Vis Sci. 2020 Jun 3;61(6):13
pubmed: 32503053
Cornea. 2011 Oct;30 Suppl 1:S54-9
pubmed: 21912232
Jpn J Ophthalmol. 2007 Nov-Dec;51(6):424-30
pubmed: 18158592
Biochem Biophys Res Commun. 1997 Apr 7;233(1):200-2
pubmed: 9144422
Endocrinology. 2019 Jan 1;160(1):20-35
pubmed: 30388216
Sci Rep. 2020 May 14;10(1):7958
pubmed: 32409724
Int J Biol Sci. 2014 Jul 25;10(8):825-33
pubmed: 25076859
Cold Spring Harb Perspect Biol. 2011 Feb 01;3(2):
pubmed: 21421915
Biochem Biophys Res Commun. 2001 Oct 26;288(2):296-300
pubmed: 11606042
Invest Ophthalmol Vis Sci. 2014 Feb 18;55(2):1006-16
pubmed: 24474276
Invest Ophthalmol Vis Sci. 2015 Jan 27;56(2):1335-48
pubmed: 25626969
Obes Rev. 2011 May;12(5):e494-503
pubmed: 21366833
Cell Tissue Res. 2010 Jan;339(1):247-57
pubmed: 19693541
Analyst. 2011 Feb 7;136(3):473-8
pubmed: 20967331
Exp Eye Res. 2012 May;98:105-6
pubmed: 20705069
Biochemistry. 1989 May 2;28(9):4094-9
pubmed: 2752011
Biomed Pharmacother. 2018 Feb;98:347-356
pubmed: 29275176
Invest Ophthalmol Vis Sci. 2012 May 22;53(6):3092-103
pubmed: 22491412
Microsc Res Tech. 2008 May;71(5):357-70
pubmed: 18219669
Nat Rev Neurol. 2011 Jun 21;7(7):379-90
pubmed: 21691338
Prog Retin Eye Res. 2013 Nov;37:1-12
pubmed: 23770081
Anticancer Res. 2011 Nov;31(11):3645-57
pubmed: 22110183
Diabetes. 2009 Jan;58(1):215-26
pubmed: 18840783
Small GTPases. 2014;5:e29846
pubmed: 25010901
Acta Ophthalmol. 2015 Jun;93(4):e254-60
pubmed: 25487877
Matrix Biol. 2018 Oct;71-72:348-367
pubmed: 29277723
Physiol Rev. 1998 Jul;78(3):783-809
pubmed: 9674695
J Neurosci. 2005 Feb 2;25(5):1113-21
pubmed: 15689547
Int J Ophthalmol. 2011;4(6):652-7
pubmed: 22553739
Endocrinology. 2012 Apr;153(4):1649-62
pubmed: 22355071
Biochem Biophys Res Commun. 2019 Feb 5;509(2):395-401
pubmed: 30594393
Small GTPases. 2016 Jul 2;7(3):173-7
pubmed: 27254302
Invest Ophthalmol Vis Sci. 2014 Mar 04;55(3):1269-76
pubmed: 24508785
Sci Rep. 2020 Sep 29;10(1):16018
pubmed: 32994409
Adv Drug Deliv Rev. 2014 Apr;69-70:29-41
pubmed: 24636868
Matrix Biol. 2017 Jul;60-61:27-37
pubmed: 27496349
Cell. 2006 May 5;125(3):577-91
pubmed: 16678100
FEBS Lett. 1996 Aug 26;392(2):189-93
pubmed: 8772201
Curr Opin Cell Biol. 2008 Oct;20(5):495-501
pubmed: 18640274
Med Sci Monit. 2018 May 16;24:3212-3219
pubmed: 29766980
Optom Vis Sci. 2004 Aug;81(8):574-7
pubmed: 15300114
Pharmacol Res. 2018 Jul;133:201-212
pubmed: 29791873

Auteurs

Yosuke Ida (Y)

Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan.

Fumihito Hikage (F)

Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan. hikage@sapmed.ac.jp.

Hiroshi Ohguro (H)

Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH