Doxycycline and its derivative, COL-3, decrease dyskinesia induced by l-DOPA in hemiparkinsonian rats.


Journal

British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536

Informations de publication

Date de publication:
07 2021
Historique:
revised: 03 12 2020
received: 17 06 2020
accepted: 16 02 2021
pubmed: 23 3 2021
medline: 6 7 2021
entrez: 22 3 2021
Statut: ppublish

Résumé

l-DOPA-induced dyskinesia is a debilitating effect of treating Parkinson's disease with this drug. New therapeutic approaches that prevent or attenuate this side effect are needed. Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesion were treated with l-DOPA (p.o. 20 mg·kg A single injection of doxycycline or COL-3 attenuated l-DOPA-induced dyskinesia. Co-treatment with doxycycline from the first day of l-DOPA suppressed the onset of dyskinesia. The improved motor response after l-DOPA was not affected by doxycycline or COL-3. Doxycycline treatment was associated with decreased immunoreactivity of FosB, COX-2, the astroglial protein GFAP and the microglial protein OX-42, which were elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and ROS production. Metalloproteinase-2/-9 activity and production of ROS in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia. The present study demonstrates the anti-dyskinetic potential of doxycycline and its analogue compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or prevent l-DOPA-induced dyskinesia in Parkinson's patients.

Sections du résumé

BACKGROUND AND PURPOSE
l-DOPA-induced dyskinesia is a debilitating effect of treating Parkinson's disease with this drug. New therapeutic approaches that prevent or attenuate this side effect are needed.
EXPERIMENTAL APPROACH
Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesion were treated with l-DOPA (p.o. 20 mg·kg
KEY RESULTS
A single injection of doxycycline or COL-3 attenuated l-DOPA-induced dyskinesia. Co-treatment with doxycycline from the first day of l-DOPA suppressed the onset of dyskinesia. The improved motor response after l-DOPA was not affected by doxycycline or COL-3. Doxycycline treatment was associated with decreased immunoreactivity of FosB, COX-2, the astroglial protein GFAP and the microglial protein OX-42, which were elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and ROS production. Metalloproteinase-2/-9 activity and production of ROS in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia.
CONCLUSION AND IMPLICATIONS
The present study demonstrates the anti-dyskinetic potential of doxycycline and its analogue compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or prevent l-DOPA-induced dyskinesia in Parkinson's patients.

Identifiants

pubmed: 33751546
doi: 10.1111/bph.15439
doi:

Substances chimiques

Antiparkinson Agents 0
Reactive Oxygen Species 0
Tetracyclines 0
tetracycline CMT-3 0
Levodopa 46627O600J
Oxidopamine 8HW4YBZ748
Matrix Metalloproteinase 3 EC 3.4.24.17
Matrix Metalloproteinase 2 EC 3.4.24.24
Matrix Metalloproteinase 9 EC 3.4.24.35
Doxycycline N12000U13O

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2595-2616

Informations de copyright

© 2021 The British Pharmacological Society.

Références

Acuña, L., Hamadat, S., Corbalán, N. S., González-Lizárraga, F., Dos-Santos-Pereira, M., Rocca, J., Díaz, J. S., Del-Bel, E., Papy-García, D., Chehín, R. N., Michel, P. P., & Raisman-Vozari, R. (2019). Rifampicin and its derivative rifampicin Quinone reduce microglial inflammatory responses and neurodegeneration induced in vitro by α-Synuclein fibrillary aggregates. Cell, 8(8), 776-793. https://doi.org/10.3390/cells8080776
Agwuh, K. N., & MacGowan, A. (2006). Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. The Journal of Antimicrobial Chemotherapy, 58(2), 256-265. https://doi.org/10.1093/jac/dkl224
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407-411. https://doi.org/10.1111/bph.14112
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & Pawson, A. J. (2019). The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176(Suppl 1), S21-S141. https://doi.org/10.1111/bph.14748
Annese, V., Herrero, M. T., Di Pentima, M., Gomez, A., Lombardi, L., Ros, C. M., De Pablos, V., Fernandez-Villalba, E., & De Stefano, M. E. (2015). Metalloproteinase-9 contributes to inflammatory glia activation and nigrostriatal pathway degeneration in both mouse and monkey models of MPTP-induced parkinsonism. Brain Structure and Function, 220(2), 703-727. https://doi.org/10.1007/s00429-014-0718-8
Barnum, C. J., Eskow, K. L., Dupre, K., Blandino, P. Jr., Deak, T., & Bishop, C. (2008). Exogenous corticosterone reduces l-DOPA-induced dyskinesia in the hemi-parkinsonian rat: Role for IL-1β. Neuroscience, 156(1), 30-41. https://doi.org/10.1016/j.neuroscience.2008.07.016
Ben-Azu, B., Omogbiya, I. A., Aderibigbe, A. O., Umukoro, S., Ajayi, A. M., & Iwalewa, E. O. (2018). Doxycycline prevents and reverses schizophrenic-like behaviors induced by ketamine in mice via modulation of oxidative, nitrergic and cholinergic pathways. Brain Research Bulletin, 139, 114-124. https://doi.org/10.1016/j.brainresbull.2018.02.007
Benbow, U., & Brinckerhoff, C. E. (1997). The AP-1 site and MMP gene regulation: What is all the fuss about? Matrix Biology, 15(8-9), 519-526. https://doi.org/10.1016/s0945-053x(97)90026-3
Boi, L., Pisanu, A., Greig, N. H., Scerba, M. T., Tweedie, D., Mulas, G., Fenu, S., Carboni, E., Spiga, S., & Carta, A. R. (2019). Immunomodulatory drugs alleviate l-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Movement Disorders, 34(12), 1818-1830. https://doi.org/10.1002/mds.27799
Bortolanza, M., Cavalcanti-Kiwiatkoski, R., Padovan-Neto, F. E., da Silva, C. A., Mitkovski, M., Raisman-Vozari, R., & Del-Bel, E. (2015). Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. Neurobiology of Disease, 73, 377-387. https://doi.org/10.1016/j.nbd.2014.10.017
Bortolanza, M., Nascimento, G. C., Socias, S. B., Ploper, D., Chehín, R. N., Raisman-Vozari, R., & Del-Bel, E. (2018). Tetracycline repurposing in neurodegeneration: Focus on Parkinson's disease. Journal of Neural Transmission, 125(10), 1403-1415. https://doi.org/10.1007/s00702-018-1913-1
Bortolanza, M., Padovan-Neto, F. E., Cavalcanti-Kiwiatkoski, R., Dos Santos-Pereira, M., Mitkovski, M., Raisman-Vozari, R., & Del-Bel, E. (2015). Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by l-DOPA? Philosophical Transactions of the Royal Society, B: Biological Sciences, 370(1672), 20140190. https://doi.org/10.1098/rstb.2014.0190
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
Bredberg, E., Lennernäs, H., & Paalzow, L. (1994). Pharmacokinetics of levodopa and carbidopa in rats following different routes of administration. Pharmaceutical Research, 11(4), 549-555. https://doi.org/10.1023/a:1018970617104
Carta, A. R., Mulas, G., Bortolanza, M., Duarte, T., Pillai, E., Fisone, G., Vozari, R. R., & Del-Bel, E. (2017). l-DOPA-induced dyskinesia and neuroinflammation: Do microglia and astrocytes play a role? The European Journal of Neuroscience, 45(1), 73-91. https://doi.org/10.1111/ejn.13482
Cenci, M. A., Lee, C. S., & Björklund, A. (1998). l-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. European Journal of Neuroscience, 10(8), 2694-2706. https://doi.org/10.1046/j.1460-9568.1998.00285.x
Cenci, M. A., Riggare, S., Pahwa, R., Eidelberg, D., & Hauser, R. A. (2020). Dyskinesia matters. Movement Disorders, 35(3), 392-396. https://doi.org/10.1002/mds.27959
Chang, J. W., Wachtel, S. R., Young, D., & Kang, U. J. (1999). Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson's disease: Studies on medial forebrain bundle and striatal lesions. Neuroscience, 88(2), 617-628. https://doi.org/10.1016/s0306-4522(98)00217-6
Cho, Y., Son, H. J., Kim, E. M., Choi, J. H., Kim, S. T., Ji, I. J., Choi, D. H., Joh, T. H., Kim, Y. S., & Hwang, O. (2009). Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotoxicity Research, 16(4), 361-371. https://doi.org/10.1007/s12640-009-9078-1
Choi, D. H., Kim, Y. J., Kim, Y. G., Joh, T. H., Beal, M. F., & Kim, Y. S. (2011). Role of matrix metalloproteinase 3-mediated α-synuclein cleavage in dopaminergic cell death. The Journal of Biological Chemistry, 286(16), 14168-14177. https://doi.org/10.1074/jbc.M111.222430
Chotibut, T., Meadows, S., Kasanga, E. A., McInnis, T., Cantu, M. A., Bishop, C., & Salvatore, M. F. (2017). Ceftriaxone reduces l-DOPA-induced dyskinesia severity in 6-hydroxydopamine Parkinson's disease model. Movement Disorders, 32(11), 1547-1556. https://doi.org/10.1002/mds.27077
Chtarto, A., Humbert-Claude, M., Bockstael, O., Das, A. T., Boutry, S., Breger, L. S., Klaver, B., Melas, C., Barroso-Chinea, P., Gonzalez-Hernandez, T., Muller, R. N., DeWitte, O., Levivier, M., Lundberg, C., Berkhout, B., & Tenenbaum, L. (2016). A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Molecular Therapy-Methods & Clinical Development, 5, 16027. https://doi.org/10.1038/mtm.2016.27
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153
Del-Bel, E., Bortolanza, M., Dos-Santos-Pereira, M., Bariotto, K., & Raisman-Vozari, R. (2016). l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements? Synapse, 70(12), 479-500. https://doi.org/10.1002/syn.21941
dos Santos-Pereira, M., da Silva, C. A., Guimarães, F. S., & Del-Bel, E. (2016). Co-administration of cannabidiol and capsazepine reduces l-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiology of Disease, 94, 179-195. https://doi.org/10.1016/j.nbd.2016.06.013
Edan, R. A., Luqmani, Y. A., & Masocha, W. (2013). COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain. PLoS One, 8(2), e57827. https://doi.org/10.1371/journal.pone.0057827
Egeberg, A., Hansen, P. R., Gislason, G. H., & Thyssen, J. P. (2016). Exploring the association between rosacea and Parkinson disease: A Danish nationwide cohort study. JAMA Neurology, 73(5), 529-534. https://doi.org/10.1001/jamaneurol.2016.0022
Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R. B., & Brooks, D. J. (2006). In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiology of Disease, 21, 404-412. https://doi.org/10.1016/j.nbd.2005.08.002
Gomes, M. Z., Raisman-Vozari, R., & Del Bel, E. A. (2008). A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Research, 1203, 160-169. https://doi.org/10.1016/j.brainres.2008.01.088
González-Lizárraga, F., Socías, S. B., Ávila, C. L., Torres-Bugeau, C. M., Barbosa, L. R., Binolfi, A., Sepúlveda-Díaz, J. E., Del-Bel, E., Fernandez, C. O., Papy-Garcia, D., Itri, R., Raisman-Vozari, R., & Chehín, R. N. (2017). Repurposing doxycycline for synucleinopathies: Remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Scientific Reports, 7, 41755. https://doi.org/10.1038/srep41755
Griffin, M. O., Fricovsky, E., Ceballos, G., & Villarreal, F. (2010). Tetracyclines: A pleitropic family of compounds with promising therapeutic properties. Review of the literature. American Journal of Physiology. Cell Physiology, 299(3), C539-C548. https://doi.org/10.1152/ajpcell.00047.2010
Gu, Y., Walker, C., Ryan, M. E., Payne, J. B., & Golub, L. M. (2012). Non-antibacterial tetracycline formulations: Clinical applications in dentistry and medicine. Journal of Oral Microbiology, 4(1), 19227. https://doi.org/10.3402/jom.v4i0.19227
Gu, Z., Kaul, M., Yan, B., Kridel, S. J., Cui, J., Strongin, A., Smith, J. W., Liddington, R. C., & Lipton, S. A. (2002). S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science, 297(5584), 1186-1190. https://doi.org/10.1126/science.1073634
Hald, A., & Lotharius, J. (2005). Oxidative stress and inflammation in Parkinson's disease: Is there a causal link? Experimental Neurology, 193(2), 279-290. https://doi.org/10.1016/j.expneurol.2005.01.013
Huot, P., Johnston, T. H., Koprich, J. B., Fox, S. H., & Brotchie, J. M. (2013). The pharmacology of l-DOPA-induced dyskinesia in Parkinson's disease. Pharmacological Reviews, 65(1), 171-222. https://doi.org/10.1124/pr.111.005678
Kelsey, J. E., & Neville, C. (2014). The effects of the β-lactam antibiotic, ceftriaxone, on forepaw stepping and l-DOPA-induced dyskinesia in a rodent model of Parkinson's disease. Psychopharmacology, 231(12), 2405-2415. https://doi.org/10.1007/s00213-013-3400-6
Kieburtz, K., Tilley, B., Ravina, B., Galpern, W., Shannon, K., Tanner, C., Wooten, F., Racette, B., Dewey Jr, R. P., Scott, B., Carte, J., Andrews, P., Manyam, B., Rao, J., Aminoff, M. J., Christine, C., Nance, M., Parashos, S., Peterson, S., … Obradov, Z. (2008). A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clinical Neuropharmacology, 31(3), 141-150.
Kim, J. H., Lee, H. W., Hwang, J., Kim, J., Lee, M., Han, H., Lee, W., & Suk, K. (2012). Microglia-inhibiting activity of Parkinson's disease drug amantadine. Neurobiology of Aging, 33(9), 2145-2159. https://doi.org/10.1016/j.neurobiolaging.2011.08.011
Kurlan, R., Rothfield, K. P., Woodward, W. R., Nutt, J. G., Miller, C., Lichter, D., & Shoulson, I. (1988). Erratic gastric emptying of levodopa may cause “random” fluctuations of parkinsonian mobility. Neurology, 38(3), 419-421. https://doi.org/10.1212/wnl.38.3.419
Lazzarini, M., Martin, S., Mitkovski, M., Vozari, R. R., Stühmer, W., & Bel Del, E. (2013). Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia, 61(7), 1084-1100. https://doi.org/10.1002/glia.22496
Liang, Y., Zhou, T., Chen, Y., Lin, D., Jing, X., Peng, S., Zheng, D., Zeng, Z., Lei, M., Wu, X., Huang, K., Yang, L., Xiao, S., Liu, J., & Tao, E. (2017). Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology, 63, 137-145. https://doi.org/10.1053/j.ajkd.2016.01.020
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.15178
Lindgren, H. S., Rylander, D., Iderberg, H., Andersson, M., O'Sullivan, S. S., Williams, D. R., Lees, A. J., & Cenci, M. A. (2011). Putaminal upregulation of FosB/ΔFosB-like immunoreactivity in Parkinson's disease patients with dyskinesia. Journal of Parkinson's Disease, 1(4), 347-357. https://doi.org/10.3233/JPD-2011-11068
Liu, Y., Ramamurthy, N., Marecek, J., Lee, H. M., Chen, J. L., Ryan, E., Rifkin, R., & Golub, M. (2001). The lipophilicity, pharmacokinetics, and cellular uptake of different chemically-modified tetracyclines (CMTs). Current Medicinal Chemistry, 8, 243-252. https://doi.org/10.2174/0929867013373525
Lorenzl, S., Albers, D. S., Narr, S., Chirichigno, J., & Beal, M. F. (2002). Expression of MMP-2, MMP9, and MMP-1 and their endogenous counter regulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson's disease. Experimental Neurology, 178(1), 13-20. https://doi.org/10.1006/exnr.2002.8019
Lundblad, M., Picconi, B., Lindgren, H., & Cenci, M. A. (2004). A model of l-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 16(1), 110-123. https://doi.org/10.1016/j.nbd.2004.01.007
McKeage, K., & Deeks, E. D. (2010). Doxycycline 40 mg capsules (30 mg immediate-release/10 mg delayed-release beads): Anti-inflammatory dose in rosacea. American Journal of Clinical Dermatology, 11(3), 217-222. https://doi.org/10.2165/11204850-000000000-00000
Muir, E. M., Adcock, K. H., Morgenstern, D. A., Clayton, R., von Stillfried, N., Rhodes, K., Ellis, C., Fawcett, J. W., & Rogers, J. H. (2002). Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Molecular Brain Research, 100(1-2), 103-117. https://doi.org/10.1016/s0169-328x(02)00132-8
Mulas, G., Espa, E., Fenu, S., Spiga, S., Cossu, G., Pillai, E., Carboni, E., Simbula, G., Jadžić, D., Angius, F., Spolitu, S., Batetta, B., Lecca, D., Giuffrida, A., & Carta, A. R. (2016). Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous l-DOPA delivery in the 6-OHDA model of Parkinson's disease. Experimental Neurology, 286, 83-92. https://doi.org/10.1016/j.expneurol.2016.09.013
Nascimento, G. C., Rizzi, E., Gerlach, R. F., & Leite-Panissi, C. R. A. (2013). Expression of MMP-2 and MMP-9 in the rat trigeminal ganglion during the development of temporomandibular joint inflammation. Brazilian Journal of Medical and Biological Research, 46(11), 956-967. https://doi.org/10.1590/1414-431X20133138
Ohlin, K. E., Francardo, V., Lindgren, H. S., Sillivan, S. E., O'Sullivan, S. S., Luksik, A. S., Vassoler, F. M., Lees, A. J., Konradi, C., & Cenci, M. A. (2011). Vascular endothelial growth factor is upregulated by l-DOPA in the parkinsonian brain: Implications for the development of dyskinesia. Brain, 134(Pt 8), 2339-2357. https://doi.org/10.1093/brain/awr165
Olanow, C. W. (2007). The pathogenesis of cell death in Parkinson's disease. Movement Disorders, 22, S335-S342. https://doi.org/10.1002/mds.21675
Ouchi, Y., Yoshikawa, E., Sekine, Y., Futatsubashi, M., Kanno, T., Ogusu, T., & Torizuka, T. (2005). Microglial activation and dopamine terminal loss in early Parkinson's disease. Annals of Neurology, 57(2), 168-175. https://doi.org/10.1002/ana.20338
Padovan-Neto, F. E., Echeverry, M. B., Tumas, V., & Del-Bel, E. A. (2009). Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease. Neuroscience, 159(3), 927-935. https://doi.org/10.1016/j.neuroscience.2009.01.034
Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates.San Diego: Academic Press.
Payne, J. B., Golub, L. M., Stoner, J. A., Lee, H. M., Reinhardt, R. A., Sorsa, T., & Slepian, M. J. (2011). The effect of subantimicrobial-dose-doxycycline periodontal therapy on serum biomarkers of systemic inflammation: A randomized, double-masked, placebo-controlled clinical trial. Journal of the American Dental Association (1939), 142(3), 262-273. https://doi.org/10.14219/jada.archive.2011.0165
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410
Picconi, B., Centonze, D., Håkansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A., & Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nature Neuroscience, 6(5), 501-506. https://doi.org/10.1038/nn1040
Ruzza, P., Siligardi, G., Hussain, R., Marchiani, A., Islami, M., Bubacco, L., Delogu, G., Fabbri, D., Dettori, M. A., Sechi, M., Pala, N., Spissu, Y., Migheli, R., Serra, P. A., & Sechi, G. (2014 Jan 15). Ceftriaxone blocks the polymerization of α-synuclein and exerts neuroprotective effects in vitro. ACS Chemical Neuroscience, 5(1), 30-38. https://doi.org/10.1021/cn400149k
Rylander, D., Recchia, A., Mela, F., Dekundy, A., Danysz, W., & Cenci, M. A. (2009). Pharmacological modulation of glutamate transmission in a rat model of l-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. Journal of Pharmacology and Experimental Therapeutics, 330(1), 227-235. https://doi.org/10.1124/jpet.108.150425
Santa-Cecília, F. V., Leite, C. A., Del-Bel, E., & Raisman-Vozari, R. (2019). The neuroprotective effect of doxycycline on neurodegenerative diseases. Neurotoxicity Research, 35(4), 981-986. https://doi.org/10.3389/fphar.2019.00738
Santa-Cecília, F. V., Socias, B., Ouidja, M. O., Sepulveda-Diaz, J. E., Acuña, L., Silva, R. L., Michel, P. P., Del-Bel, E., Cunha, T. M., & Raisman-Vozari, R. (2016). Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotoxicity Research, 29(4), 447-459. https://doi.org/10.1007/s12640-015-9592-2
Somogyi, P., & Takagi, H. (1982). A note on the use of picric acid-paraformaldehyde glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience, 7, 1779-1783. https://doi.org/10.1016/0306-4522(82)90035-5
Stoilova, T., Colombo, L., Forloni, G., Tagliavini, F., & Salmona, M. (2013). A new face for old antibiotics: Tetracyclines in treatment of amyloidoses. Journal of Medicinal Chemistry, 56(15), 5987-6006. https://doi.org/10.1021/jm400161p
Tansey, M. G., McCoy, M. K., & Frank-Cannon, T. C. (2007). Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology, 208(1), 1-25. https://doi.org/10.1016/j.expneurol.2007.07.004
Teismann, P., Tieu, K., Choi, D. K., Wu, D. C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V., & Przedborski, S. (2003). Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proceedings of the National Academy of Sciences, 100(9), 5473-5478. https://doi.org/10.1073/pnas.0837397100
Walker, C., Preshaw, P. M., Novak, J., Hefti, A. F., Bradshaw, M., & Powala, C. (2005). Long-term treatment with sub-antimicrobial dose doxycycline has no antibacterial effect on intestinal flora. Journal of Clinical Periodontology, 32(11), 1163-1169. https://doi.org/10.1111/j.1600-051X.2005.00840.x
Wolf, S. A., Boddeke, H. W., & Kettenmann, H. (2017). Microglia in physiology and disease. Annual Review of Physiology, 79, 619-643. https://doi.org/10.1146/annurev-physiol-022516-034406
Zhang, S. F., Xie, C. L., Lin, J. Y., Wang, M. H., Wang, X. J., & Liu, Z. G. (2018). Lipoic acid alleviates l-DOPA-induced dyskinesia in 6-OHDA parkinsonian rats via anti-oxidative stress. Molecular Medicine Reports, 17(1), 1118-1124. https://doi.org/10.3892/mmr.2017.7974

Auteurs

Mariza Bortolanza (M)

Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.

Glauce C do Nascimento (GC)

Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.

Rita Raisman-Vozari (R)

Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.

Elaine Del-Bel (E)

Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH