Crystal structure of RahU, an aegerolysin protein from the human pathogen Pseudomonas aeruginosa, and its interaction with membrane ceramide phosphorylethanolamine.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 03 2021
22 03 2021
Historique:
received:
10
08
2020
accepted:
08
03
2021
entrez:
23
3
2021
pubmed:
24
3
2021
medline:
26
10
2021
Statut:
epublish
Résumé
Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species. The knowledge on bacterial aegerolysin-lipid interactions is scarce. We show that Pseudomonas aeruginosa aegerolysin RahU interacts with CPE, but not with sphingomyelin-enriched artificial membranes, and that RahU interacts with the insect cell line producing CPE. We report crystal structures of RahU alone and in complex with tris(hydroxymethyl)aminomethane (Tris), which, like the phosphorylethanolamine head group of CPE, contains a primary amine. The RahU structures reveal that the two loops proximal to the amino terminus form a cavity that accommodates Tris, and that the flexibility of these two loops is important for this interaction. We show that Tris interferes with CPE-enriched membranes for binding to RahU, implying on the importance of the ligand cavity between the loops and its proximity in RahU membrane interaction. We further support this by studying the interaction of single amino acid substitution mutants of RahU with the CPE-enriched membranes. Our results thus represent a starting point for a better understanding of the role of P. aeruginosa RahU, and possibly other bacterial aegerolysins, in bacterial interactions with other organisms.
Identifiants
pubmed: 33753805
doi: 10.1038/s41598-021-85956-2
pii: 10.1038/s41598-021-85956-2
pmc: PMC7985367
doi:
Substances chimiques
Bacterial Proteins
0
Ethanolamines
0
Fungal Proteins
0
Hemolysin Proteins
0
Membrane Lipids
0
aegerolysin
0
phosphorylethanolamine
78A2BX7AEU
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6572Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK080834
Pays : United States
Références
FEMS Microbiol Lett. 2015 May;362(10):
pubmed: 25926530
J Biol Chem. 2002 Nov 1;277(44):41916-24
pubmed: 12198118
Methods Mol Biol. 2019;2003:53-70
pubmed: 31218613
Sci Rep. 2019 Mar 25;9(1):5073
pubmed: 30911026
Cell. 1999 Feb 5;96(3):315-8
pubmed: 10025397
Semin Cell Dev Biol. 2017 Dec;72:142-151
pubmed: 28506897
Mol Plant Pathol. 2012 Aug;13(6):614-29
pubmed: 22672649
PLoS Biol. 2015 Feb 05;13(2):e1002049
pubmed: 25654333
J Invertebr Pathol. 2017 Jan;142:27-33
pubmed: 27480405
Biochimie. 2013 Oct;95(10):1855-64
pubmed: 23806422
Curr Opin Struct Biol. 2009 Jun;19(3):341-8
pubmed: 19481444
Pathogens. 2014 Aug 18;3(3):680-703
pubmed: 25438018
PLoS One. 2014 Nov 12;9(11):e112555
pubmed: 25390338
Microbiology (Reading). 2008 Feb;154(Pt 2):654-665
pubmed: 18227268
FEMS Microbiol Lett. 2005 Mar 1;244(1):181-6
pubmed: 15727838
Appl Environ Microbiol. 2014 Sep;80(18):5689-97
pubmed: 25002432
Biochemistry. 2005 Aug 23;44(33):11137-47
pubmed: 16101298
PLoS One. 2013;8(1):e53079
pubmed: 23308139
Nat Biotechnol. 2001 Jul;19(7):668-72
pubmed: 11433280
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8815-21
pubmed: 10922040
Nat Rev Microbiol. 2019 Jun;17(6):371-382
pubmed: 30944413
Science. 1995 Jun 30;268(5219):1899-902
pubmed: 7604262
Structure. 2001 Apr 4;9(4):341-6
pubmed: 11525171
Microb Pathog. 2007 Jan;42(1):29-35
pubmed: 17166692
Biochim Biophys Acta. 2016 Mar;1858(3):446-56
pubmed: 26351738
Eur J Biochem. 2003 Mar;270(6):1199-210
pubmed: 12631278
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):133-44
pubmed: 20124693
Biochim Biophys Acta Biomembr. 2019 Jul 1;1861(7):1284-1292
pubmed: 31067435
Cell. 2019 Feb 21;176(5):1040-1053.e17
pubmed: 30712872
J Lipid Res. 2009 Jun;50(6):1101-8
pubmed: 19144995
Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):812-829
pubmed: 26993577
Insects. 2015 Apr 14;6(2):352-67
pubmed: 26463190
Anal Biochem. 2006 Feb 1;349(1):136-47
pubmed: 16337141
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67
pubmed: 22505256
Chem Phys Lipids. 2006 Jun;141(1-2):169-78
pubmed: 16584720
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Sci Rep. 2017 Jun 8;7(1):3063
pubmed: 28596570
J Biol Chem. 2008 Jul 4;283(27):18665-77
pubmed: 18442982
Cell Immunol. 2011;270(2):103-13
pubmed: 21704311
Mol Microbiol. 2019 Oct;112(4):1253-1269
pubmed: 31376198
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183307
pubmed: 32298680
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
pubmed: 19461840
Toxicon. 2010 Dec;56(8):1436-42
pubmed: 20816689
Mar Drugs. 2017 Jun 17;15(6):
pubmed: 28629124
J Biol Chem. 2004 Jun 25;279(26):26975-82
pubmed: 15084605
FASEB J. 2015 Sep;29(9):3920-34
pubmed: 26060215
Structure. 2003 Nov;11(11):1319-28
pubmed: 14604522
Eur J Biochem. 2000 Jun;267(12):3549-58
pubmed: 10848971