Pharmacogenomics and functional imaging to predict irinotecan pharmacokinetics and pharmacodynamics: the predict IR study.


Journal

Cancer chemotherapy and pharmacology
ISSN: 1432-0843
Titre abrégé: Cancer Chemother Pharmacol
Pays: Germany
ID NLM: 7806519

Informations de publication

Date de publication:
07 2021
Historique:
received: 03 12 2020
accepted: 16 03 2021
pubmed: 24 3 2021
medline: 21 9 2021
entrez: 23 3 2021
Statut: ppublish

Résumé

Irinotecan (IR) displays significant PK/PD variability. This study evaluated functional hepatic imaging (HNI) and extensive pharmacogenomics (PGs) to explore associations with IR PK and PD (toxicity and response). Eligible patients (pts) suitable for Irinotecan-based therapy. At baseline: (i) PGs: blood analyzed by the Affymetrix-DMET™-Plus-Array (1936 variants: 1931 single nucleotide polymorphisms [SNPs] and 5 copy number variants in 225 genes, including 47 phase I, 80 phase II enzymes, and membrane transporters) and Sanger sequencing (variants in HNF1A, Topo-1, XRCC1, PARP1, TDP, CDC45L, NKFB1, and MTHFR), (ii) HNI: pts given IV 250 MBq- N = 31 pts. The two most significant associations between PK and PD with gene variants or HNI parameters (P < 0.05) included: (1) PK: SN38-Metabolic Ratio with CL Exploratory associations were observed between Irinotecan PK/PD with hepatic functional imaging and extensive pharmacogenomics. Further work is required to confirm and validate these findings in a larger cohort of patients. ACTRN12610000897066, Date registered: 21/10/2010.

Identifiants

pubmed: 33755789
doi: 10.1007/s00280-021-04264-8
pii: 10.1007/s00280-021-04264-8
doi:

Substances chimiques

Irinotecan 7673326042

Banques de données

ANZCTR
['ACTRN12610000897066']

Types de publication

Journal Article Observational Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

39-52

Subventions

Organisme : Australian National Health and Medical Research Council
ID : 628564

Références

Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194
pubmed: 11489791
Chu XY, Kato Y, Ueda K, Suzuki H, Niinuma K, Tyson CA, Weizer V, Dabbs JE, Froehlich R, Green CE, Sugiyama Y (1998) Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res 58(22):5137–5143
pubmed: 9823324
Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33(3):434–439. https://doi.org/10.1124/dmd.104.001909
doi: 10.1124/dmd.104.001909 pubmed: 15608127
Schellens JH, Maliepaard M, Scheper RJ, Scheffer GL, Jonker JW, Smit JW, Beijnen JH, Schinkel AH (2000) Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann N Y Acad Sci 922:188–194
doi: 10.1111/j.1749-6632.2000.tb07037.x
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. https://doi.org/10.1007/s40262-018-0644-7
doi: 10.1007/s40262-018-0644-7 pubmed: 29520731 pmcid: 6132501
Sugatani J, Sueyoshi T, Negishi M, Miwa M (2005) Regulation of the human UGT1A1 gene by nuclear receptors constitutive active/androstane receptor, pregnane X receptor, and glucocorticoid receptor. Methods Enzymol 400:92–104. https://doi.org/10.1016/S0076-6879(05)00006-6
doi: 10.1016/S0076-6879(05)00006-6 pubmed: 16399345
van der Bol JM, Mathijssen RH, Loos WJ, Friberg LE, van Schaik RH, de Jonge MJ, Planting AS, Verweij J, Sparreboom A, de Jong FA (2007) Cigarette smoking and irinotecan treatment: pharmacokinetic interaction and effects on neutropenia. J Clin Oncol 25(19):2719–2726. https://doi.org/10.1200/JCO.2006.09.6115
doi: 10.1200/JCO.2006.09.6115 pubmed: 17563393
Mathijssen RH, Verweij J, de Jonge MJ, Nooter K, Stoter G, Sparreboom A (2002) Impact of body-size measures on irinotecan clearance: alternative dosing recommendations. J Clin Oncol 20(1):81–87. https://doi.org/10.1200/JCO.2002.20.1.81
doi: 10.1200/JCO.2002.20.1.81 pubmed: 11773157
Hahn RZ, Antunes MV, Verza SG, Perassolo MS, Suyenaga ES, Schwartsmann G, Linden R (2018) Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity. Curr Med Chem. https://doi.org/10.2174/0929867325666180622141101
doi: 10.2174/0929867325666180622141101
US Food and Drug Administration (2014) Irinotecan hydrochloride. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=e98886aa-933c-430f-bb56-f1eb3862aae4#boxedwarning
Association RDP (2014) Dutch Pharmacogenetics Working Group (DPWG). Pharmacogenetic Guidelines. Netherlands. Irinotecan-UGT1A1. http://kennisbank.knmp.nl
Michael M, Thompson M, Hicks RJ, Mitchell PL, Ellis A, Milner AD, Di Iulio J, Scott AM, Gurtler V, Hoskins JM, Clarke SJ, Tebbut NC, Foo K, Jefford M, Zalcberg JR (2006) Relationship of hepatic functional imaging to irinotecan pharmacokinetics and genetic parameters of drug elimination. J Clin Oncol 24(26):4228–4235. https://doi.org/10.1200/JCO.2005.04.8496
doi: 10.1200/JCO.2005.04.8496 pubmed: 16896007
Affymetrix I (2008) DMET
Deeken J (2009) The Affymetrix DMET platform and pharmacogenetics in drug development. Curr Opin Mol Ther 11(3):260–268
pubmed: 19479659
Horita Y, Yamada Y, Hirashima Y, Kato K, Nakajima T, Hamaguchi T, Shimada Y (2010) Effects of bevacizumab on plasma concentration of irinotecan and its metabolites in advanced colorectal cancer patients receiving FOLFIRI with bevacizumab as second-line chemotherapy. Cancer Chemother Pharmacol 65(3):467–471. https://doi.org/10.1007/s00280-009-1051-4
doi: 10.1007/s00280-009-1051-4 pubmed: 19554330
Gupta E, Mick R, Ramirez J, Wang X, Lestingi TM, Vokes EE, Ratain MJ (1997) Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol 15(4):1502–1510. https://doi.org/10.1200/JCO.1997.15.4.1502
doi: 10.1200/JCO.1997.15.4.1502 pubmed: 9193346
Toffoli G, Sharma MR, Marangon E, Posocco B, Gray E, Mai Q, Buonadonna A, Polite BN, Miolo G, Tabaro G, Innocenti F (2017) Genotype-guided dosing study of FOLFIRI plus bevacizumab in patients with metastatic colorectal cancer. Clin Cancer Res 23(4):918–924. https://doi.org/10.1158/1078-0432.CCR-16-1012
doi: 10.1158/1078-0432.CCR-16-1012 pubmed: 27507617
Innocenti F, Schilsky RL, Ramirez J, Janisch L, Undevia S, House LK, Das S, Wu K, Turcich M, Marsh R, Karrison T, Maitland ML, Salgia R, Ratain MJ (2014) Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 32(22):2328–2334. https://doi.org/10.1200/JCO.2014.55.2307
doi: 10.1200/JCO.2014.55.2307 pubmed: 24958824 pmcid: 4105486
van der Bol JM, Mathijssen RH, Creemers GJ, Planting AS, Loos WJ, Wiemer EA, Friberg LE, Verweij J, Sparreboom A, de Jong FA (2010) A CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan. Clin Cancer Res 16(2):736–742. https://doi.org/10.1158/1078-0432.CCR-09-1526
doi: 10.1158/1078-0432.CCR-09-1526 pubmed: 20068078
Denlinger CS, Blanchard R, Xu L, Bernaards C, Litwin S, Spittle C, Berg DJ, McLaughlin S, Redlinger M, Dorr A, Hambleton J, Holden S, Kearns A, Kenkare-Mitra S, Lum B, Meropol NJ, O’Dwyer PJ (2009) Pharmacokinetic analysis of irinotecan plus bevacizumab in patients with advanced solid tumors. Cancer Chemother Pharmacol 65(1):97–105. https://doi.org/10.1007/s00280-009-1008-7
doi: 10.1007/s00280-009-1008-7 pubmed: 19415281 pmcid: 2746259
Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33(4):245–259. https://doi.org/10.2165/00003088-199733040-00001
doi: 10.2165/00003088-199733040-00001 pubmed: 9342501
Conti JA, Kemeny NE, Saltz LB, Huang Y, Tong WP, Chou TC, Sun M, Pulliam S, Gonzalez C (1996) Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol 14(3):709–715. https://doi.org/10.1200/JCO.1996.14.3.709
doi: 10.1200/JCO.1996.14.3.709 pubmed: 8622015
Sissung TM, Rajan A, Blumenthal GM, Liewehr DJ, Steinberg SM, Berman A, Giaccone G, Figg WD (2019) Reproducibility of pharmacogenetics findings for paclitaxel in a heterogeneous population of patients with lung cancer. PLoS One 14(2):e0212097. https://doi.org/10.1371/journal.pone.0212097
doi: 10.1371/journal.pone.0212097 pubmed: 30817750 pmcid: 6394902
Ravegnini G, Urbini M, Simeon V, Genovese C, Astolfi A, Nannini M, Gatto L, Saponara M, Ianni M, Indio V, Brandi G, Trino S, Hrelia P, Biasco G, Angelini S, Pantaleo MA (2018) An exploratory study by DMET array identifies a germline signature associated with imatinib response in gastrointestinal stromal tumor. Pharmacogenomics J. https://doi.org/10.1038/s41397-018-0050-4
doi: 10.1038/s41397-018-0050-4 pubmed: 30237583
Uchiyama T, Kanno H, Ishitani K, Fujii H, Ohta H, Matsui H, Kamatani N, Saito K (2012) An SNP in CYP39A1 is associated with severe neutropenia induced by docetaxel. Cancer Chemother Pharmacol 69(6):1617–1624. https://doi.org/10.1007/s00280-012-1872-4
doi: 10.1007/s00280-012-1872-4 pubmed: 22562553
Nieuweboer AJ, Smid M, de Graan AM, Elbouazzaoui S, de Bruijn P, Eskens FA, Hamberg P, Martens JW, Sparreboom A, de Wit R, van Schaik RH, Mathijssen RH (2016) Role of genetic variation in docetaxel-induced neutropenia and pharmacokinetics. Pharmacogenomics J 16(6):519–524. https://doi.org/10.1038/tpj.2015.66
doi: 10.1038/tpj.2015.66 pubmed: 26345519
Rumiato E, Boldrin E, Amadori A, Saggioro D (2013) DMET (drug-metabolizing enzymes and transporters) microarray analysis of colorectal cancer patients with severe 5-fluorouracil-induced toxicity. Cancer Chemother Pharmacol 72(2):483–488. https://doi.org/10.1007/s00280-013-2210-1
doi: 10.1007/s00280-013-2210-1 pubmed: 23760813
Harris M, Bhuvaneshwar K, Natarajan T, Sheahan L, Wang D, Tadesse MG, Shoulson I, Filice R, Steadman K, Pishvaian MJ, Madhavan S, Deeken J (2014) Pharmacogenomic characterization of gemcitabine response—a framework for data integration to enable personalized medicine. Pharmacogenet Genomics 24(2):81–93. https://doi.org/10.1097/FPC.0000000000000015
doi: 10.1097/FPC.0000000000000015 pubmed: 24401833
Thompson P, Wheeler HE, Delaney SM, Lorier R, Broeckel U, Devidas M, Reaman GH, Scorsone K, Sung L, Dolan ME, Berg SL (2014) Pharmacokinetics and pharmacogenomics of daunorubicin in children: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol 74(4):831–838. https://doi.org/10.1007/s00280-014-2535-4
doi: 10.1007/s00280-014-2535-4 pubmed: 25119182 pmcid: 4282931
Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J, Sparreboom A, McLeod HL (2003) Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 9(9):3246–3253
pubmed: 12960109
Li M, Seiser EL, Baldwin RM, Ramirez J, Ratain MJ, Innocenti F, Kroetz DL (2018) ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenomics J 18(1):35–42. https://doi.org/10.1038/tpj.2016.75
doi: 10.1038/tpj.2016.75 pubmed: 27845419
Wong M, Balleine RL, Blair EY, McLachlan AJ, Ackland SP, Garg MB, Evans S, Farlow D, Collins M, Rivory LP, Hoskins JM, Mann GJ, Clarke CL, Gurney H (2006) Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J Clin Oncol 24(16):2448–2455. https://doi.org/10.1200/JCO.2005.02.1295
doi: 10.1200/JCO.2005.02.1295 pubmed: 16651648
Di Martino MT, Arbitrio M, Leone E, Guzzi PH, Rotundo MS, Ciliberto D, Tomaino V, Fabiani F, Talarico D, Sperlongano P, Doldo P, Cannataro M, Caraglia M, Tassone P, Tagliaferri P (2011) Single nucleotide polymorphisms of ABCC5 and ABCG1 transporter genes correlate to irinotecan-associated gastrointestinal toxicity in colorectal cancer patients: a DMET microarray profiling study. Cancer Biol Ther 12(9):780–787. https://doi.org/10.4161/cbt.12.9.17781
doi: 10.4161/cbt.12.9.17781 pubmed: 21892003
Hoskins JM, Marcuello E, Altes A, Marsh S, Maxwell T, Van Booven DJ, Pare L, Culverhouse R, McLeod HL, Baiget M (2008) Irinotecan pharmacogenetics: influence of pharmacodynamic genes. Clin Cancer Res 14(6):1788–1796. https://doi.org/10.1158/1078-0432.CCR-07-1472
doi: 10.1158/1078-0432.CCR-07-1472 pubmed: 18347181
Glimelius B, Garmo H, Berglund A, Fredriksson LA, Berglund M, Kohnke H, Bystrom P, Sorbye H, Wadelius M (2011) Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J 11(1):61–71. https://doi.org/10.1038/tpj.2010.10
doi: 10.1038/tpj.2010.10 pubmed: 20177420
Marcuello E, Altes A, Menoyo A, Rio ED, Baiget M (2006) Methylenetetrahydrofolate reductase gene polymorphisms: genomic predictors of clinical response to fluoropyrimidine-based chemotherapy? Cancer Chemother Pharmacol 57(6):835–840. https://doi.org/10.1007/s00280-005-0089-1
doi: 10.1007/s00280-005-0089-1 pubmed: 16187112
Li P, Chen Q, Wang YD, Ha MW (2014) Effects of MTHFR genetic polymorphisms on toxicity and clinical response of irinotecan-based chemotherapy in patients with colorectal cancer. Genet Test Mol Biomarkers 18(5):313–322. https://doi.org/10.1089/gtmb.2013.0494
doi: 10.1089/gtmb.2013.0494 pubmed: 24611457
Dias MM, McKinnon RA, Sorich MJ (2012) Impact of the UGT1A1*28 allele on response to irinotecan: a systematic review and meta-analysis. Pharmacogenomics 13(8):889–899. https://doi.org/10.2217/pgs.12.68
doi: 10.2217/pgs.12.68 pubmed: 22676194
Dias MM, Pignon JP, Karapetis CS, Boige V, Glimelius B, Kweekel DM, Lara PN, Laurent-Puig P, Martinez-Balibrea E, Paez D, Punt CJ, Redman MW, Toffoli G, Wadelius M, McKinnon RA, Sorich MJ (2014) The effect of the UGT1A1*28 allele on survival after irinotecan-based chemotherapy: a collaborative meta-analysis. Pharmacogenomics J 14(5):424–431. https://doi.org/10.1038/tpj.2014.16
doi: 10.1038/tpj.2014.16 pubmed: 24709690
Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99(17):1290–1295. https://doi.org/10.1093/jnci/djm115
doi: 10.1093/jnci/djm115 pubmed: 17728214
Liu D, Li J, Gao J, Li Y, Yang R, Shen L (2017) Examination of multiple UGT1A and DPYD polymorphisms has limited ability to predict the toxicity and efficacy of metastatic colorectal cancer treated with irinotecan-based chemotherapy: a retrospective analysis. BMC Cancer 17(1):437. https://doi.org/10.1186/s12885-017-3406-2
doi: 10.1186/s12885-017-3406-2 pubmed: 28637434 pmcid: 5480170
Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramirez J, Relling M, Chen P, Das S, Rosner GL, Ratain MJ (2009) Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27(16):2604–2614. https://doi.org/10.1200/JCO.2008.20.6300
doi: 10.1200/JCO.2008.20.6300 pubmed: 19349540 pmcid: 2690389
Chen S, Villeneuve L, Jonker D, Couture F, Laverdiere I, Cecchin E, Innocenti F, Toffoli G, Levesque E, Guillemette C (2015) ABCC5 and ABCG1 polymorphisms predict irinotecan-induced severe toxicity in metastatic colorectal cancer patients. Pharmacogenet Genomics 25(12):573–583. https://doi.org/10.1097/FPC.0000000000000168
doi: 10.1097/FPC.0000000000000168 pubmed: 26352872
Hahn RZ, Antunes MV, Verza SG, Perassolo MS, Suyenaga ES, Schwartsmann G, Linden R (2019) Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity. Curr Med Chem 26(12):2085–2107. https://doi.org/10.2174/0929867325666180622141101
doi: 10.2174/0929867325666180622141101 pubmed: 29932028
Hahn RZ, Arnhold PC, Andriguetti NB, Schneider A, Kluck HM, Dos Reis SL, Bastiani MF, Kael I, da Silva ACC, Schwartsmann G, Antunes MV, Linden R (2018) Determination of irinotecan and its metabolite SN-38 in dried blood spots using high-performance liquid-chromatography with fluorescence detection. J Pharm Biomed Anal 150:51–58. https://doi.org/10.1016/j.jpba.2017.11.079
doi: 10.1016/j.jpba.2017.11.079 pubmed: 29216585

Auteurs

Michael Michael (M)

Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia. Michael.Michael@petermac.org.

Winston Liauw (W)

Department of Medical Oncology, St. George's Hospital, Sydney, Australia.

Sue-Anne McLachlan (SA)

Department of Medical Oncology, St. Vincent's Hospital, Melbourne, Australia.

Emma Link (E)

Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia.

Annetta Matera (A)

Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia.

Michael Thompson (M)

Division of Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia.

Michael Jefford (M)

Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.

Rod J Hicks (RJ)

Division of Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia.

Carleen Cullinane (C)

Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.

Athena Hatzimihalis (A)

Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.

Ian G Campbell (IG)

Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.

Simone Rowley (S)

Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.

Phillip J Beale (PJ)

Department of Medical Oncology, Royal Prince Alfred Hospital, Sydney, Australia.

Christos S Karapetis (CS)

Department of Medical Oncology, Flinders Medical Centre, Flinders Centre for Innovation in Cancer, Adelaide, Australia.

Timothy Price (T)

Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, Australia.

Mathew E Burge (ME)

Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH