Silica Nanoparticles.

Reverse microemulsion method Silica nanoparticles Sol-gel method Stöber method

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
entrez: 30 3 2021
pubmed: 31 3 2021
medline: 1 4 2021
Statut: ppublish

Résumé

Silica consists of one silicon atom and two oxygen atoms (SiO

Identifiants

pubmed: 33782868
doi: 10.1007/978-981-33-6158-4_3
doi:

Substances chimiques

Silicon Dioxide 7631-86-9

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

41-65

Références

Alothman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Materials 5(12):2874–2902
doi: 10.3390/ma5122874
Angelos S, Khashab NM, Yang YW, Trabolsi A, Khatib HA, Stoddart JF, Zink JI (2009) pH clock-operated mechanized nanoparticles. J Am Chem Soc 131(36):12912–12914. https://doi.org/10.1021/ja9010157
doi: 10.1021/ja9010157 pubmed: 19705840
Arriagada FJ, Osseo-Asare K (1992) Phase and dispersion stability effects in the synthesis of silica nanoparticles in a non-ionic reverse microemulsion. Colloids Surf 69(2):105–115. https://doi.org/10.1016/0166-6622(92)80221-M
doi: 10.1016/0166-6622(92)80221-M
Arriagada FJ, Osseo-Asare K (1999) Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation. Colloids Surf A Physicochem Eng Asp 154(3):311–326. https://doi.org/10.1016/S0927-7757(98)00870-X
doi: 10.1016/S0927-7757(98)00870-X
Bagwe RP, Yang CY, Hilliard LR, Tan WH (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342. https://doi.org/10.1021/la049137j
doi: 10.1021/la049137j pubmed: 15350111
Bagwe RP, Hilliard LR, Tan WH (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362. https://doi.org/10.1021/la052797j
doi: 10.1021/la052797j pubmed: 16618187 pmcid: 2517131
Bhosale SV (2014) Yoctowell cavities on magnetic silica nanoparticles for pH stimuli-responsive controlled release of drug molecules. Chem Eur J 20(18):5253–5257. https://doi.org/10.1002/chem.201400279
doi: 10.1002/chem.201400279 pubmed: 24700743
Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids 104(1):95–106. https://doi.org/10.1016/0022-3093(88)90187-1
doi: 10.1016/0022-3093(88)90187-1
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the Frontiers of brightness. Angew Chem Int Ed 50(18):4056–4066. https://doi.org/10.1002/anie.201004996
doi: 10.1002/anie.201004996
Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ (2001) Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater 13(2):258–263. https://doi.org/10.1021/cm990661z
doi: 10.1021/cm990661z
Chauhan VP, Popovic Z, Chen O, Cui J, Fukumura D, Bawendi MG, Jain RK (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed 50(48):11417–11420. https://doi.org/10.1002/anie.201104449
doi: 10.1002/anie.201104449
Chen CC, Liu YC, Wu CH, Yeh CC, Su MT, Wu YC (2005) Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv Mater 17(4):404–407. https://doi.org/10.1002/adma.200400966
doi: 10.1002/adma.200400966
Chen F, Goel S, Shi SX, Barnhart T, Lan XL, Cai WB (2018) General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Res 11(9):4890–4904. https://doi.org/10.1007/s12274-018-2078-9
doi: 10.1007/s12274-018-2078-9 pubmed: 30410684 pmcid: 6217832
Cheng W, Liang CY, Xu L, Liu G, Gao NS, Tao W, Luo LY, Zuo YX, Wang XS, Zhang XD, Zeng XW, Mei L (2017) TPGS-functionalized Polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small 13(29). https://doi.org/10.1002/smll.201700623
Corricelli M, Depalo N, Di Carlo E, Fanizza E, Laquintana V, Denora N, Agostiano A, Striccoli M, Curri ML (2014) Biotin-decorated silica coated PbS nanocrystals emitting in the second biological near infrared window for bioimaging. Nanoscale 6(14):7924–7933. https://doi.org/10.1039/C4NR01025F
doi: 10.1039/C4NR01025F pubmed: 24898567
Corsi F, De Palma C, Colombo M, Allevi R, Nebuloni M, Ronchi S, Rizzi G, Tosoni A, Trabucchi E, Clementi E, Prosperi D (2009) Towards ideal magnetofluorescent nanoparticles for bimodal detection of breast-cancer cells. Small 5(22):2555–2564. https://doi.org/10.1002/smll.200900881
doi: 10.1002/smll.200900881 pubmed: 19634132
Coti KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Mechanised nanoparticles for drug delivery. Nanoscale 1(1):16–39. https://doi.org/10.1039/b9nr00162j
doi: 10.1039/b9nr00162j pubmed: 20644858
Croissant J, Maynadier M, Gallud A, N’Dongo HP, Nyalosaso JL, Derrien G, Charnay C, Durand JO, Raehm L, Serein-Spirau F, Cheminet N, Jarrosson T, Mongin O, Blanchard-Desce M, Gary-Bobo M, Garcia M, Lu J, Tamanoi F, Tarn D, Guardado-Alvarez TM, Zink JI (2013) Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew Chem Int Ed 52(51):13813–13817. https://doi.org/10.1002/anie.201308647
doi: 10.1002/anie.201308647
Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater 7(4):1700831. https://doi.org/10.1002/adhm.201700831
doi: 10.1002/adhm.201700831
Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580. https://doi.org/10.1021/cm302828d
doi: 10.1021/cm302828d
Ekrami A, Samarbaf-Zadeh AR, Khosravi A, Zargar B, Alavi M, Amin M, Kiasat A (2011) Validity of bioconjugated silica nanoparticles in comparison with direct smear, culture, and polymerase chain reaction for detection of Mycobacterium tuberculosis in sputum specimens. Int J Nanomedicine 6:2729–2735. https://doi.org/10.2147/ijn.s23239
doi: 10.2147/ijn.s23239 pubmed: 22114503 pmcid: 3218586
Estephan ZG, Jaber JA, Schlenoff JB (2010) Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26(22):16884–16889. https://doi.org/10.1021/la103095d
doi: 10.1021/la103095d pubmed: 20942453
Farjadian F, Roointan A, Mohammadi-Samani S, Hosseini M (2019) Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng J 359:684–705. https://doi.org/10.1016/j.cej.2018.11.156
doi: 10.1016/j.cej.2018.11.156
Gao C, Zhang Q, Lu Z, Yin Y (2011) Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc 133(49):19706–19709. https://doi.org/10.1021/ja209647d
doi: 10.1021/ja209647d pubmed: 22085084
Giesche H (1994) Synthesis of monodispersed silica powders 2. Controlled growth reaction and continuous production process. J Eur Ceram Soc 14(3):205–214. https://doi.org/10.1016/0955-2219(94)90088-4
doi: 10.1016/0955-2219(94)90088-4
Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8(1):369–373. https://doi.org/10.1021/nl0727415
doi: 10.1021/nl0727415 pubmed: 18072800
Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9(3):254–257. https://doi.org/10.1002/adma.19970090317
doi: 10.1002/adma.19970090317
Hartlen KD, Athanasopoulos APT, Kitaev V (2008) Facile preparation of highly monodisperse small silica spheres (15 to > 200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24(5):1714–1720. https://doi.org/10.1021/la7025285
doi: 10.1021/la7025285 pubmed: 18225928
He XX, Nie HL, Wang KM, Tan WH, Wu X, Zhang PF (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80(24):9597–9603. https://doi.org/10.1021/ac801882g
doi: 10.1021/ac801882g pubmed: 19007246
He XX, Wang YS, Wang KM, Chen M, Chen SY (2012) Fluorescence resonance energy transfer mediated large stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Anal Chem 84(21):9056–9064. https://doi.org/10.1021/ac301461s
doi: 10.1021/ac301461s pubmed: 23017033
Helle M, Rampazzo E, Monchanin M, Marchal F, Guillemin F, Bonacchi S, Salis F, Prodi L, Bezdetnaya L (2013) Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping. ACS Nano 7(10):8645–8657. https://doi.org/10.1021/nn402792a
doi: 10.1021/nn402792a pubmed: 24070236
Hsu C-M, Connor ST, Tang MX, Cui Y (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93(13):133109. https://doi.org/10.1063/1.2988893
doi: 10.1063/1.2988893
Hu HC, Liu JJ, Yu JQ, Wang XC, Zheng HW, Xu Y, Chen M, Han J, Liu Z, Zhang Q (2017) Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale 9(14):4826–4834. https://doi.org/10.1039/c7nr01047h
doi: 10.1039/c7nr01047h pubmed: 28352894
Jetty R, Bandera YP, Daniele MA, Hanor D, Hung H-I, Ramshesh V, Duperreault MF, Nieminen A-L, Lemasters JJ, Foulger SH (2013) Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging. J Mater Chem B 1(36):4542–4554. https://doi.org/10.1039/C3TB20681E
doi: 10.1039/C3TB20681E pubmed: 32261197
Jin YH, Lohstreter S, Pierce DT, Parisien J, Wu M, Hall C, Zhao JXJ (2008) Silica nanoparticles with continuously tunable sizes: synthesis and size effects on cellular contrast imaging. Chem Mater 20(13):4411–4419. https://doi.org/10.1021/cm8007478
doi: 10.1021/cm8007478
Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136. https://doi.org/10.1016/j.bios.2015.04.030
doi: 10.1016/j.bios.2015.04.030 pubmed: 25897882
Jun B-H, Kim G, Baek J, Kang H, Kim T, Hyeon T, Jeong DH, Lee Y-S (2011) Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. Phys Chem Chem Phys 13(16):7298–7303
doi: 10.1039/c0cp02055a
Jun BH, Kim G, Jeong S, Noh MS, Pham XH, Kang H, Cho MH, Kim JH, Lee YS, Jeong DH (2015) Silica core-based Surface-enhanced Raman Scattering (SERS) tag: advances in multifunctional SERS Nanoprobes for bioimaging and targeting of biomarkers. Bull Kor Chem Soc 36(3):963–978
Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42(3):879–887. https://doi.org/10.1016/S0032-3861(00)00392-X
doi: 10.1016/S0032-3861(00)00392-X
Kim JW, Kim LU, Kim CK (2007) Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules 8(1):215–222. https://doi.org/10.1021/bm060560b
doi: 10.1021/bm060560b pubmed: 17206810
Kim H-M, Kim D-M, Jeong C, Park SY, Cha MG, Ha Y, Jang D, Kyeong S, Pham X-H, Hahm E (2018) Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Sci Rep 8(1):1–10
Knezevic NZ, Durand JO (2015) Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale 7(6):2199–2209. https://doi.org/10.1039/c4nr06114d
doi: 10.1039/c4nr06114d pubmed: 25583539
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0
doi: 10.1038/359710a0
Kuijk A, van Blaaderen A, Imhof A (2011) Synthesis of monodisperse, Rodlike silica colloids with Tunable aspect ratio. J Am Chem Soc 133(8):2346–2349. https://doi.org/10.1021/ja109524h
doi: 10.1021/ja109524h pubmed: 21250633
Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44(10):893–902. https://doi.org/10.1021/ar2000259
doi: 10.1021/ar2000259 pubmed: 21848274
Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N (2012a) Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23(11):115501. https://doi.org/10.1088/0957-4484/23/11/115501
doi: 10.1088/0957-4484/23/11/115501 pubmed: 22383452
Li M, Cushing SK, Zhang JM, Lankford J, Aguilar ZP, Ma DL, Wu NQ (2012b) Shape-dependent surface-enhanced Raman scattering in gold-Ramanprobe-silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23(11). https://doi.org/10.1088/0957-4484/23/11/115501
Liu GY, Ji HF, Yang XL, Wang YM (2008) Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core. Langmuir 24(3):1019–1025. https://doi.org/10.1021/la7025957
doi: 10.1021/la7025957 pubmed: 18166067
Liz-Marzan LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18):4329–4335. https://doi.org/10.1021/la9601871
doi: 10.1021/la9601871
Luo T, Huang P, Gao G, Shen GX, Fu S, Cui DX, Zhou CQ, Ren QS (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19(18):17030–17039. https://doi.org/10.1364/oe.19.017030
doi: 10.1364/oe.19.017030 pubmed: 21935063
Ma K, Sai H, Wiesner U (2012) Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J Am Chem Soc 134(32):13180–13183. https://doi.org/10.1021/ja3049783
doi: 10.1021/ja3049783 pubmed: 22830608
Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I, Luxenhofer G, Wiemann M, Landsiedel R, Wohlleben W, Eiden S, Mempel M, Behrendt H, Schmidt-Weber C, Gutermuth J, Alessandrini F (2014) Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. Int J Nanomedicine 9:2815–2832. https://doi.org/10.2147/ijn.s57396
doi: 10.2147/ijn.s57396 pubmed: 24940059 pmcid: 4051720
Muharnmad F, Guo MY, Qi WX, Sun FX, Wang AF, Guo YJ, Zhu GS (2011) pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO Nanolids. J Am Chem Soc 133(23):8778–8781. https://doi.org/10.1021/ja200328s
doi: 10.1021/ja200328s
Mullner M, Yuan JY, Weiss S, Walther A, Fortsch M, Drechsler M, Muller AHE (2010) Water-soluble organo-silica hybrid nanotubes templated by cylindrical polymer brushes. J Am Chem Soc 132(46):16587–16592. https://doi.org/10.1021/ja107132j
doi: 10.1021/ja107132j pubmed: 21028813
Niu DC, Li YS, Ma Z, Diao H, Gu JL, Chen HR, Zhao WR, Ruan ML, Zhang YL, Shi JL (2010) Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes. Adv Funct Mater 20(5):773–780. https://doi.org/10.1002/adfm.200901493
doi: 10.1002/adfm.200901493
Osseo-Asare K, Arriagada FJ (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf 50:321–339. https://doi.org/10.1016/0166-6622(90)80273-7
doi: 10.1016/0166-6622(90)80273-7
Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5(1):113–117. https://doi.org/10.1021/nl0482478
doi: 10.1021/nl0482478 pubmed: 15792423
Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290. https://doi.org/10.1002/smll.200900692
doi: 10.1002/smll.200900692 pubmed: 19598161
Rahayu A, Lim LW, Takeuchi T (2015) Polymer monolithic methacrylate base modified with tosylated-polyethylene glycol monomethyl ether as a stationary phase for capillary liquid chromatography. Talanta 134:232–238. https://doi.org/10.1016/j.talanta.2014.10.060
doi: 10.1016/j.talanta.2014.10.060 pubmed: 25618662
Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:132424. https://doi.org/10.1155/2012/132424
doi: 10.1155/2012/132424
Rampazzo E, Bonacchi S, Genovese D, Juris R, Sgarzi M, Montalti M, Prodi L, Zaccheroni N, Tomaselli G, Gentile S, Satriano C, Rizzarelli E (2011) A versatile strategy for signal amplification based on core/shell silica nanoparticles. Chem Eur J 17(48):13429–13432. https://doi.org/10.1002/chem.201101851
doi: 10.1002/chem.201101851 pubmed: 22009718
Razink JJ, Schlotter NE (2007) Correction to “Preparation of monodisperse silica particles: control of size and mass fraction” by G.H. Bogush, M.A. Tracy and C.F. Zukoski IV, Journal of Non-Crystalline Solids 104 (1988) 95–106. J Non-Cryst Solids 353(30):2932–2933. https://doi.org/10.1016/j.jnoncrysol.2007.06.067
doi: 10.1016/j.jnoncrysol.2007.06.067
Reineck P, Gómez D, Ng SH, Karg M, Bell T, Mulvaney P, Bach U (2013) Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core–shell nanoparticles. ACS Nano 7(8):6636–6648. https://doi.org/10.1021/nn401775e
doi: 10.1021/nn401775e pubmed: 23713513
Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L (2014) Neanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483):382–385. https://doi.org/10.1038/nature12806
doi: 10.1038/nature12806 pubmed: 24336207
Russel WB, Russel W, Saville DA, Schowalter WR (1991) Colloidal dispersions. Cambridge University Press, Cambridge
Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906. https://doi.org/10.1021/la0008636
doi: 10.1021/la0008636
Sanz-Ortiz MN, Sentosun K, Bals S, Liz-Marzan LM (2015) Templated growth of surface enhanced Raman scattering-active branched gold nanoparticles within radial mesoporous silica shells. ACS Nano 9(10):10489–10497. https://doi.org/10.1021/acsnano.5b04744
doi: 10.1021/acsnano.5b04744 pubmed: 26370658 pmcid: 4625167
Shen DK, Yang JP, Li XM, Zhou L, Zhang RY, Li W, Chen L, Wang R, Zhang F, Zhao DY (2014) Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 14(2):923–932. https://doi.org/10.1021/nl404316v
doi: 10.1021/nl404316v pubmed: 24467566
Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. https://doi.org/10.1016/j.addr.2008.03.012
doi: 10.1016/j.addr.2008.03.012 pubmed: 18514969
Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5
doi: 10.1016/0021-9797(68)90272-5
Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126(2):462–463. https://doi.org/10.1021/ja038250d
doi: 10.1021/ja038250d pubmed: 14719932
Tan H, Wang M, Yang CT, Pant S, Bhakoo KK, Wong SY, Chen ZK, Li X, Wang J (2011) Silica nanocapsules of fluorescent conjugated polymers and superparamagnetic nanocrystals for dual-mode cellular imaging. Chem Eur J 17(24):6696–6706. https://doi.org/10.1002/chem.201003632
doi: 10.1002/chem.201003632 pubmed: 21542037
Vallet-Regi M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558. https://doi.org/10.1002/anie.200604488
doi: 10.1002/anie.200604488
Van Blaaderen A, Van Geest J, Vrij A (1992) Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci 154(2):481–501. https://doi.org/10.1016/0021-9797(92)90163-G
doi: 10.1016/0021-9797(92)90163-G
Van Helden AK, Jansen JW, Vrij A (1981) Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 81(2):354–368. https://doi.org/10.1016/0021-9797(81)90417-3
doi: 10.1016/0021-9797(81)90417-3
Wang L, Tan WH (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6(1):84–88. https://doi.org/10.1021/nl052105b
doi: 10.1021/nl052105b pubmed: 16402792 pmcid: 2527125
Wang L, Wang KM, Santra S, Zhao XJ, Hilliard LR, Smith JE, Wu JR, Tan WH (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78(3):646–654. https://doi.org/10.1021/ac0693619
doi: 10.1021/ac0693619
Wang L, Lofton C, Popp M, Tan WH (2007) Using luminescent nanoparticles as staining probes for affymetrix GeneChips. Bioconjug Chem 18(3):610–613. https://doi.org/10.1021/bc060365u
doi: 10.1021/bc060365u pubmed: 17447724 pmcid: 2527177
Wang L, Zhao W, Tan W (2008) Bioconjugated silica nanoparticles: development and applications. Nano Res 1(2):99–115. https://doi.org/10.1007/s12274-008-8018-3
doi: 10.1007/s12274-008-8018-3
Wang ZP, Miu TT, Xu HA, Duan N, Ding XY, Li SA (2010) Sensitive immunoassay of Listeria monocytogenes with highly fluorescent bioconjugated silica nanoparticles probe. J Microbiol Methods 83(2):179–184. https://doi.org/10.1016/j.mimet.2010.08.013
doi: 10.1016/j.mimet.2010.08.013 pubmed: 20807555
Wang F, Cheng S, Bao Z, Wang J (2013) Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew Chem Int Ed 52(39):10344–10348. https://doi.org/10.1002/anie.201304364
doi: 10.1002/anie.201304364
Wu SH, Hung Y, Mou CY (2011) Mesoporous silica nanoparticles as nanocarriers. Chem Commun 47(36):9972–9985. https://doi.org/10.1039/c1cc11760b
doi: 10.1039/c1cc11760b
Wu YF, Xue P, Kang YJ, Hui KM (2013) Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Anal Chem 85(6):3166–3173. https://doi.org/10.1021/ac303398b
doi: 10.1021/ac303398b pubmed: 23402311
Xing H, Wang ZD, Xu ZD, Wong NY, Xiang Y, Liu GLG, Lu Y (2012) DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 6(1):802–809. https://doi.org/10.1021/nn2042797
doi: 10.1021/nn2042797 pubmed: 22148462
Xu ZG, Liu SY, Kang YJ, Wang MF (2015) Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy. Nanoscale 7(13):5859–5868. https://doi.org/10.1039/c5nr00297d
doi: 10.1039/c5nr00297d pubmed: 25757484
Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Watanabe R, Aramaki K, Shimojima A, Tatsumi T, Okubo T (2009) Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chem Mater 21(15):3719–3729. https://doi.org/10.1021/cm900993b
doi: 10.1021/cm900993b
Yu Y-Y, Chen C-Y, Chen W-C (2003) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44(3):593–601. https://doi.org/10.1016/S0032-3861(02)00824-8
doi: 10.1016/S0032-3861(02)00824-8
Zhang S, Chu Z, Yin C, Zhang C, Lin G, Li Q (2013) Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J Am Chem Soc 135(15):5709–5716. https://doi.org/10.1021/ja3123015
doi: 10.1021/ja3123015 pubmed: 23496255
Zhao XJ, Hilliard LR, Mechery SJ, Wang YP, Bagwe RP, Jin SG, Tan WH (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101(42):15027–15032. https://doi.org/10.1073/pnas.0404806101
doi: 10.1073/pnas.0404806101 pubmed: 15477593 pmcid: 524056
Zhao JS, Liu YF, Park HJ, Boggs JM, Basu A (2012) Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-Sulfogalactose carbohydrate-carbohydrate interaction using model systems and cellular binding studies. Bioconjug Chem 23(6):1166–1173. https://doi.org/10.1021/bc2006169
doi: 10.1021/bc2006169 pubmed: 22551003

Auteurs

Hyejin Chang (H)

Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea.

Jaehi Kim (J)

Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.

Won-Yeop Rho (WY)

School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea.

Xuan-Hung Pham (XH)

Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.

Jong Hun Lee (JH)

Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea.

Sang Hun Lee (SH)

Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea.

Dae Hong Jeong (DH)

Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea.

Bong-Hyun Jun (BH)

Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea. bjun@konkuk.ac.kr.

Articles similaires

Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis
Neoplastic Stem Cells Animals Humans Aldehyde Dehydrogenase Tretinoin

Classifications MeSH