Magnetic Nanoparticles.
Drug delivery
MRI
Magnetic nanoparticles
Separation
Superparamagnetism
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
30
3
2021
pubmed:
31
3
2021
medline:
1
4
2021
Statut:
ppublish
Résumé
Magnetic nanoparticles have been used in various fields such as data storage, biomedicine, or bioimaging with their unique magnetic property. With their low toxicity, the importance of magnetic nanoparticles keeps increasing especially in biological field. In this chapter, content suitable for scientific inquirers or undergraduates to acquire basic knowledge about nanotechnology is introduced and then recent research trends in nanotechnology are covered.
Identifiants
pubmed: 33782873
doi: 10.1007/978-981-33-6158-4_8
doi:
Substances chimiques
Magnetite Nanoparticles
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
191-215Références
Banerjee SS, Chen D-H (2007) Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem Mater 19(25):6345–6349. https://doi.org/10.1021/cm702278u
doi: 10.1021/cm702278u
Chang JH, Kang KH, Choi J, Jeong YK (2008) High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles. Superlattice Microst 44(4):442–448. https://doi.org/10.1016/j.spmi.2007.12.006
doi: 10.1016/j.spmi.2007.12.006
DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, Adamson GN, Ivkov R (2007) Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice. J Nucl Med 48(3):437–444
pubmed: 17332622
Di Corato R, Bigall NC, Ragusa A, Dorfs D, Genovese A, Marotta R, Manna L, Pellegrino T (2011) Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano 5(2):1109–1121. https://doi.org/10.1021/nn102761t
doi: 10.1021/nn102761t
pubmed: 21218823
Ding Q, Liu D, Guo D, Yang F, Pang X, Che R, Zhou N, Xie J, Sun J, Huang Z, Gu N (2017) Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials 124:35–46. https://doi.org/10.1016/j.biomaterials.2017.01.043
doi: 10.1016/j.biomaterials.2017.01.043
pubmed: 28187393
Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble Iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091. https://doi.org/10.1021/nn2048137
doi: 10.1021/nn2048137
pubmed: 22494015
Hou Y, Qiao R, Fang F, Wang X, Dong C, Liu K, Liu C, Liu Z, Lei H, Wang F, Gao M (2013) NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor Xenografts in vivo. ACS Nano 7(1):330–338. https://doi.org/10.1021/nn304837c
doi: 10.1021/nn304837c
pubmed: 23199030
Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94(3):308–313. https://doi.org/10.1111/j.1349-7006.2003.tb01438.x
doi: 10.1111/j.1349-7006.2003.tb01438.x
pubmed: 12824927
Jang J-t, Nah H, Lee J-H, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48(7):1234–1238. https://doi.org/10.1002/anie.200805149
doi: 10.1002/anie.200805149
Jun B-H, Noh MS, Kim J, Kim G, Kang H, Kim M-S, Seo Y-T, Baek J, Kim J-H, Park J, Kim S, Kim Y-K, Hyeon T, Cho M-H, Jeong DH, Lee Y-S (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6(1):119–125. https://doi.org/10.1002/smll.200901459
doi: 10.1002/smll.200901459
pubmed: 19904763
Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T (2000) Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol 17(2):309–324
pubmed: 10891540
Lee IS, Lee N, Park J, Kim BH, Yi Y-W, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128(33):10658–10659. https://doi.org/10.1021/ja063177n
doi: 10.1021/ja063177n
pubmed: 16910642
Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T (2010) Uniform Mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132(2):552–557. https://doi.org/10.1021/ja905793q
doi: 10.1021/ja905793q
pubmed: 20017538
Liu J, Bu J, Bu W, Zhang S, Pan L, Fan W, Chen F, Zhou L, Peng W, Zhao K, Du J, Shi J (2014) Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and Upconverted luminescence imaging. Angew Chem Int Ed 53(18):4551–4555. https://doi.org/10.1002/anie.201400900
doi: 10.1002/anie.201400900
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212. https://doi.org/10.1007/s12274-012-0200-y
doi: 10.1007/s12274-012-0200-y
Morishita N, Nakagami H, Morishita R, Takeda S-i, Mishima F, Bungo Terazono, Nishijima S, Kaneda Y, Tanaka N (2005) Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 334(4):1121–1126. https://doi.org/10.1016/j.bbrc.2005.06.204
doi: 10.1016/j.bbrc.2005.06.204
pubmed: 16134237
Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam D-H, Kim ST, Kim S-H, Kim S-W, Lim K-H, Kim K-S, Kim S-O, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed 46(28):5397–5401. https://doi.org/10.1002/anie.200604775
Nishio K, Masaike Y, Ikeda M, Narimatsu H, Gokon N, Tsubouchi S, Hatakeyama M, Sakamoto S, Hanyu N, Sandhu A, Kawaguchi H, Abe M, Handa H (2008) Development of novel magnetic nano-carriers for high-performance affinity purification. Colloids Surf B: Biointerfaces 64(2):162–169. https://doi.org/10.1016/j.colsurfb.2008.01.013
doi: 10.1016/j.colsurfb.2008.01.013
pubmed: 18313904
Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324. https://doi.org/10.1002/anie.200802323
doi: 10.1002/anie.200802323
Takada T, Yamashita T, Sato M, Sato A, Ono I, Tamura Y, Sato N, Miyamoto A, Ito A (2009) Honda H (2009) growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. Biomed Res Int
Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based Nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463. https://doi.org/10.1021/nl060765q
doi: 10.1021/nl060765q
pubmed: 16834429
Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold Nanorod/Fe3O4 nanoparticle “Nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and Photothermal ablation of Cancer cells. Angew Chem Int Ed 48(15):2759–2763. https://doi.org/10.1002/anie.200805282
doi: 10.1002/anie.200805282
Wilhelm C, Fortin J-P, Gazeau F (2007) Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. J Nanosci Nanotechnol 7(8):2933–2937
doi: 10.1166/jnn.2007.668
Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32(7):1890–1905. https://doi.org/10.1016/j.biomaterials.2010.11.028
doi: 10.1016/j.biomaterials.2010.11.028
pubmed: 21167595
Zengin A, Yildirim E, Tamer U, Caykara T (2013) Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst 138(23):7238–7245. https://doi.org/10.1039/C3AN01458D
doi: 10.1039/C3AN01458D
pubmed: 24133677
Zhang L, Qiao S, Jin Y, Yang H, Budihartono S, Stahr F, Yan Z, Wang X, Hao Z, Lu GQ (2008) Fabrication and size-selective bioseparation of magnetic silica Nanospheres with highly ordered periodic Mesostructure. Adv Funct Mater 18(20):3203–3212. https://doi.org/10.1002/adfm.200800363
doi: 10.1002/adfm.200800363
Zhou T, Wu B, Xing D (2012) Bio-modified Fe3O4 core/au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 22(2):470–477. https://doi.org/10.1039/C1JM13692E
doi: 10.1039/C1JM13692E